AD-A119 161

UNCLASSIFIED

2
|

OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC=~ETC F/6 9/2

THE IMPLEMENTATION OF A MULTI-BACKEND DATABASE SYSTEM (MDBS). P==ETC(U)

JUL 82 X HEe M HIGASHIDA» D K HSIAO» D S KERR NOOO14=75=C=0573
NPS-52~82=008 NL

B

/

NPS-52-82-008

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

AD A119161

THE IMPLEMENTATION OF A MULTI-BACKEND DATABASE
SYSTEM (MDBS): PART II1 - THE FIRST PROTOTYPE
MDBS AND THE SOFTWARE ENGINEERING EXPERIENCE

Xingui He, Masanobu Higashida, David K. Hsiao,
Douglas S. Kerr, Ali Orooji, Zong-Zhi Shi,
and Paula Strawser

July 1982

Approved for public release; distribution unlimited

Prepared for: Naval Postgraduate School
Monterey, CA 93940
[-~ .

82 "~ i~ o026

T 4___.___.___j

v]

: NAVAL POSTGRADUATE SCHOOL
! Monterey, California

Rear Admiral J. J. Ekelund David A, Schrady
Superintendent Acting Provost

The work reported herein was supported by Contract N00014-75-C-0573 from o
the Office of Naval Research. . '

Reproduction of all or part of this report is authorized. }

This report was prepared by:

| il g

Professor and Chairman
of Computer Science

Reviewed by: Released by:

/VM r O?/a/&{r-\ W/

DAVID K. ASTAD, Chalrman
Department of Computer Science Dean of Research

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

f REPORT DOCUMENTATION PAGE agr AP DETRUCTIONS

: g V. REPORT NUMBER 3. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOO NUM
NPS52-82-008 -pugl6(
:’ ‘ ‘ & TITLE (and Subtitle) 5. TYPR OF REPORT & PERIOD COVERED

THE IMPLEMENTATION OF A MULTI-BACKEND DATABASE Technical Report
SYSTEM (MDBS): PART II - THE FIRST PROTOTYPE
MDBS AND THE SOFTWARE ENGINEERING EXPERIENCE 6. PERFORMING ORG, REPORT NUMBER

7. AUTHOR(s) 8. A [] NUM
Xingui He, Masanobu Higashida, David K. Hsiao, N00014-75-C-0573
Douglas S. Kerr, Ali Orooji, Zong-Zhi Shi,
Paula Strawser

9. PERFORMING ORGANIZATION NAME AND ADDRESS - RROGRAN € Kzzg‘u;.“ l:' ¢
Naval Postgraduate School 4115-A1
Monterey, CA 93940 -

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORYT DATE
Naval Postgraduate School July 1982
Monterey, CA 93940 13 fz;l!l OF PAGES

JTE MONITORING AGENCY NAME & ADORESS(/f different from Controlling Otfice) | 15. SECURITY CLASS. (of this repert)
Unclassified

5a. D!CEASSIHCATIOOJ DOWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

-

7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, Il different from Report)

N

10. SUPPLEMENTARY NOTES h

19. KEY WORDS (Continue on reverse eide if y and | ity by block number)

backend database system, database system implementation, database computer,
database machine, software engineering, database.

20. ABDSTRACT (Continue on reverse side If necessary and identify by block mumber)

" The Multi-Backend Database System, MDBS, uses one microcomputer as the
master or controller, and a varying number of microcomputers as slaves or
backends. No special hardware is required. The backends are configured in
a parallel manner. A new backend may be added by replicating the existing
software on an addition minicomputer.

A prototype MDBS is being implemented in order to carry out design ’
verification and performance evaluation studies. This report is the second

e

DD , o' 1473 eoimion oF 1 nov 68 1s oBsOLETR
$'N 0102- LF- 014- 6601

SECUMTY CLASHPICATION OF ¥HIS PASE e Date Basered

s r————

e e ———

SECUNITY CLASBIFICATION OF THIS PAGE (When Dete Bntered)

| »in a series which describe the MDBS implementation. First, the overall

design and implementation of MDBS is given. Then, the controller and the
backends functions are described in detail.

In order to facilitate performance evaluation experiments, a program
to generate test data and a program to generate test requests are required.
The former program was described in the first report. The latter program

- 1s described in this report.

Our goal is not limited to the production of a prototype MDBS, but is
also aimed toward the application of software engineering techniques to the
development of the system. Thus, the software engineering techniques being
used are also discussed.

The appendicies contain the detailed designs for the controller
subsystem, one of the two modules in the backends subsystem (the other
module, the directory management, was contained in the first report) and
the test request generation module,

* $/N 0102- LK 014- 6401

SECUMTY CLASRIFICATION OF THIS PASE(TRen Date Bntered)

TR T
SRy

-

PAGE {1ii

PREFACE

This work was supported by Contract N00014-75-C-0573 from the Office of
Naval Research to Dr. David K. Hsiao and conducted in the Laboratory for 3
* Database Systems Research. The Laboratory for Database Systems Research is %
initially funded by the Digital Equipment Corporation (DEC), Office of Naval
Research (ONR) and the Ohio State University (0SU) and consists of the staff,
graduate students, undergraduate students, Vis{ting Scholars and faculty for

.‘N’
o
4
£
;
3

conducting research in database systems., Dr. Douglas S. Kerr, Associate 1
Professor of Computer and Information Scien:e at the Ohio State University is
the present Director of Laboratory,
. Since July 1, 1982, Dr. Hsiao assumed the Chairmanship of the Computer
- Science Department at the Naval Postgraduate School and continued the funded
{ research at the Naval Postgraduate School. The Laboratory for Database
Systems Research will be moved to the Naval Fustgraduate School (NPS) in
% June of 1983 and supported by DEC, ONR and NPS. This technical report was
drafted at the Ohio State University and completed at the Naval Postgraduate

! School.
We would like to thank all those who have helped with the MDBS project.

In particular, the MDBS design and analysis were developed by Jai Menon.
(Now, Dr. Jai Menon of IBM Research Laboratory, San Jose.) He also provided
much help in the detailed designs. Several graduate students are involved
with MDBS project: Richard Boyne, Patti Dock, and James Kiper. Several un-
dergraduate students are also involved with the project: Julie Bendig,
- Raymond Browder, Chris Jeschke, Drew Logan, Jim Mckenna, William Mielke, and
Joe Stuber. Tamer Azsu and Steven Barth provided much help in the detailed
Jose Alegria, Tom Bodnovich and David Brown contributed

designs and coding.
background material which was necessary for making our design decisions.

! Accessicn For
NTIS GRA&I
rr1¢ TaR
Ut arnounssA4
Joutitentle

“‘""‘"’""‘“7

\‘t'4 \Huu/
.vn v"‘l*v C‘~’el
Av -A* ."1/01‘

"wq Spsclal

e & o e S o e e e ¢ e e

! o

T

PAGE 1iv

TABLE OF CONTENTS

LIST or rIGms....l.......'.....‘...............-....‘lﬁﬂ....... viii
Pm‘cx.'....l.Il'...‘......‘.........l..'.....I.‘.‘...........l. 111

1. PROTOTYPING A MULTI-BACKEND DATABASE SYSTEM (MDBS)..cccocecess 1

E
3 1.1 Logical Description Of MDBSeccecesenccecascccsscsssccssons 2
; 1.1.1 The MDBS Hardware and Software Organization.........
| 1.1.2 Distribution of Request Execution Among

] f » Controller and BackendS..ccescscosvcsccscscccosssose 7

1.2 The Implementation Strategy ~ What and Why?.ccceecocsceces 13
1.2.1 Version I - A Very Simple System: Single Mini

Q Without Concurrency Control and With Simplified
j Directory Management..coceccocrsssescsscsscsccccecse 13
! 1.2.2 Version II - A Simple System: Single Mini With
! Concurrency COntrolessacevsccsevcsscscsosoanessscses 13
1.2.3 Version III - The First "Real" System : Multiple
Minis With Concurrency Controlescccscecscssocacececes 1lé&
1.2.4 Version IV - The Real System With "Good"
Directory Management..cccccccovsstcssnasosscscscsces 1é
1.2.5 Version V - The Full System With All the
Designed Features Included.csesccocssscconcacescecses 1é&
1.3 An Overview of the MDBS ImplementatioD..cececsccecscscsses 1é
1.3.1 A Top-level View of MDBS...ccoscevsonscsccscsceccsseas 15
1.3.2 Functions of the Controller.ccscsccccrcccacssscsacsese 15

1.3.3 Functions of each Backend...covevcscsescscscsnsanscss 17
1.3.4 Request Execution in MDBS8..ccccecossvcecscancscsnsee 17

(A) Sequence of Actions for an Insert Request....... 18

(B) Sequence of Actions for Non-insert Requests..... 20

1.3.5 The Role of the Communication Interface.ccccccsscase 22

1.4 The Organization of the Rest of the Report.cececevecscce-. 22
2. A FUNCTIONAL DESCRIPTION OF MDBS..cccccvcecccascocscoscasscscse 23
2.1 Functions of the Controllerc..cceeeccceeresccsesssscscsses 23
2.1.1 The Request Preparation FPunctiop®...ccecccccevscccss 23

(A) The Parser FunctioDececeesecesscccsssscsccscncas 23

(B) The Request Composer FunctioD.cececcscsccccccess 24

2.1.2 The Insert Information Generation Function#..ceceeee 26

= - e = - - ——— -

L ETIRe T e
) . e - e e e m——— . n - —— S il s e B

PAGE v

(A) The Backend Selector PunctioB..cccceccscocccscecs 26

L (B) The Cluster Id Generator FunctioB.c.ccoevccecsse 26
(C) The Descriptor Id Generator FunctioB..eeceeeseee 27

2.1.3 The Post Processing FUnctiof®ecceccecesscccccccscces 27

(A) The Aggregate Post Operationm Functiom.ccceeeeces 27

(B) The Reply Monitor Functiofecesscece.sceccccccces 27

2.2 Functions of each Backend...ccevesssoocecscsssseccssscsace 28

2.2.1 The Directory Management PunctionB..cccceccccescaccs 28

(A) The Descriptor Search Punctiobe.e.ccecccscccesves 28

(B) The Cluster Search FunctioNeeccesscescecsccccces 28

(C) The Address Gemeration FunctioDeceeescscecececces 29

2.2.2 The Record Processing FunctionB..cevcescscceccssccas 29

(A) The Physical Data Operation FunctioD....ceccecees 29

(B) The Aggregate Operation FunctiolMesecscecscecsecss 30

2.3 Request Execution in MDBS..cccssesssscsscsscccscssscsccces 30

; 2.3.1 Sequence of Actiona for Insert Request8..ccscscsesece 30
2.3.2 Sequence of Actions for Delete RequestS....ceccecses 32

2.3.3 Sequence of Actions for Retrieve RequestS.c.ceecsees 34

2.3.4 Sequence of Actions for Update RequestS..csceccesess 36
2.4 Process Structure Of MDBS..cseeecececsascsstcsstsocscssssses 38
2.4,1 Two Alternative Process Structures for

Implementing MDBS...vsesececcscassccsccscssscssscsss 38

2.4.2 The Choice of Message-oriented Approach to
Implement MDBS..cceoccecccccaceccarcssssacsssvssnsccaaes 39
3. AN IMPLEMENTATION OF THE CONTROLLER PUNCTIONS..ccscccescecsscs &0
3.1 Design and Implementation Goals for the Controller........ &0
i 3.2 The Concept of "Traffic Unit".ceceececscscecaconcsncsccass &l
3.3 The Structure of the Controller.cecccececescsccacsncsasces &l
3.3.]1 The Request Preparation FunctionB...cceceesesacesces &2
, (A) The Parser FunctioBeceeeececcssaesccccnsassencee &2
(B) The Request Composer Functioleeescsceseoscscases 43
3.3.2 The Insert Information Generation Functions.ecccseces 43
(A) The Beckend Selector Functiol.cssccececcesccssee &4
(B) The Cluster Id Geperator FunctioMeccceeerccsssee &5
(C) The Descriptor Id Generator FunctioBe.ceccscecees #5
3.3.3 The Post Processing FunctionB..cececcscscscsscsacce &3

H

3.4 The Process Structure of the Controllerc.icceccesccccscasss 46
4. AN IMPLEMENTATION OF BACKEND PUNCTIONS.cceeccecacccccccsccacee &7
4.1 The Record Processing FunctionBeeeccecececcscscscecsncoses 47
4.1.1 The Block_Buffer_ AbstractioDesesscccoscscsesscsasces 48
4.1.2 The Retrieve Processing SubfunctioN.cceccccsccscsceces 49
4.1.3 The Aggregation SubfunctionS.ceccscscecscsccsccseces 50
4.1.4 The Insert Processing SubfunctioD.eeeccescevssccseseces S5l
4.1.5 The Update Processing SubfunctioD.cceccsscescesscess 51
4.1.6 The Delete Processing SubfunctioBiecececsccscssscccss 53
4.2 Concurrency CONtIOlecccsvsscccacsssesosososcncssssscsosnasce b
4.2.1 Two Types of COnBiBLENCY.esscscscvacersassccscssoses Ob
4.2.2 Two Categories Of LOCKB.coveosscsscsscencnnscscaccasce 57
4.2.3 The Notion of Transaction..sesceescscscscaccsscecscs 37
4.2.4 Concurrency Control Using a Messsge-Oriented
APPIroacCh.iceescocececansscessccescssssosscsscscccscne 98
(A) The Process Structure in the Backends....cceceo. 58
(B) Cluster-To-Traffic~Unit Table (CTUT).ccecesscase 59
(C) Traffic-Unit-To—-Cluster Table (TUCT) cececesceacs 59
(D) The Processing of Comcurrency Control
Information.csscssescsscesesvessssascsssnsescese Ol
5. TESTING MDBS..ccconcaccssccoscssasncscescsssasnscssssasscsncea 03
5.1 The Need for the Generation of Test Databsses and
Lists of User RequestB..cecvssssscacscsscsascscascnnnsssss 63
5.2 The Generation of User Requests ListS..cccucvcccesccccecees 63
5.2.1 User-Generated vs. Program—Generated Requests....... 63
5.2.2 A Simple Test Package for a Single User.cesccscecsce 64
5.2.3 A Test Package for the Simulation of Multiple
Concurrent UBerB..ccccsccscsroerccssssssscosssosscsce 65
5.2.4 A Test Package for the Generstion of Random
Requests..ssesovcscasetscsscssssscasosscsssssscsccnss 65
6. OUR SOFTVARE ENGINEERING RXPERIENCE..ccscccsecccscoscacsccscss 07
6.1 The Effectiveness of the Techniques Used...ccoccecscccccee 67
6.1.1 The Use of Structured Walkthroughs..cseccoccesceveses 67
6.1.2 The Use of a Formal Systems Specification
Language (8SL).cccececcscacccsssscasscssosscesssccace 08
6.1.3 A Top-Down Design Strategy and the Use of

Data and Service AbstractionB..cccccscccccccccscoces

6.2 Trying New Software anineering Techniquel...-..-..-...-..

6.201 The U'e Of JCCklon Ch.rt.otbotosocc0"00..........0.

6.2.2 Standards for Module D‘co‘Po.itibnoaococoaooc-oooooo

6.3 Current Status of the Inplelentltion.........-..-...-..-..

nruncgsooli..0..'....‘........!...‘l....‘.l.c...o.l..lnl.lol...

APPENDIX A:

HOW TO READ AND FOLLOW THE PROGRAM
SPECIFIcATIo“s....l.l....ll.llll.l...l'.l.l..l.l...l.

A.l Parts within an Appendix.....................-.-..-....-.-

A.2 The Format Of 8 Part.ccececcccscscscsacsssnsosscscsscsascsnosss

A.3 Documentation Techniques for 8 Part.cccescssscscscccccsses

APPENDIX B:
B.l Part
B.2 Part
B.3 Part

APPENDIX C:
C.l Part
C.2 Part
6.3 Part
C.4 Part
C.5 Part

APPENDIX D:

D.l1 Part

D.2 Part

THE SSL SPECIFICATION FOR MDBS CONTROLLER..¢csscsccse
I - The Request Preparation ProcesS....cscsceevecss
I1 - The Insert Information Generation Process......
II1I - The Post Processing ProcCeBB..cesccecssscscssnse
THE SSL SPECIFICATION FOR RECORD PROCESSING.cccosccee
I - The Control Subfunction of Record Processing...
II - The Retrieve Processing Subfunction..ec.cecccsses
III - The Insert Processing SubfunctioBecesssscccescs
IV - The Update Processing Subfunctiom...cccecececss
V - The Delete Processing SubfunctioN..eceecccsscass
THE SSL SPECIFICATION FOR THE TEST REQUEST
GENERATION AND EXECUTION PACKAGE...ccccccecvsssossose
I -~ The Top Level of Test Request Generatiom

and Executiofeceececssccsssossscscasessacsccscscs

II - The Output Hodhle for Test Executiolicccecsceses

72
72
73
73
79
80

82
82
82

2 b I8

101
117
117
120
126
129
134

137

137
146

PAGE viii

DTy

LIST OF FIGURES

Page
The MDBS Hardware Organization........-....-.--u.-....-.. 3 d
Execution Phases of a Retrieval Request...sescscsccsesescs 5

Execution of a Retrieval Request in the Presence
of Access Control and Concurrency Controlecccsececcsccssss 8

Overyiew of Directory Management as Seen From
The l-th BaCkend....Ol.Cl.l..l...ﬂ.....l....l.'.l‘.....'.. 9

Record Processing FunctioN.ecccosscosccscacsssesssossessss 11
Modes of MDBS OperationB.ccececcescesccsassscesscasscsnass 12
The MDBS StrucCtUrececscccccscccsecscsscosscsesscsssssasssscss 16
Sequence of Actions for an Insert Request.ccccccevscccccses 19
Sequence of Actions for a Retrieve Request.ceccsscccscasass 21
Sequence of Actions for an Insert RequesSt.ccccesceccsccaes 31
Sequence of Actions for a Delete RequeBt..cceecscccsccsccaes 33
Sequence of Actions for a Retrieve RequesSt...ccveecccscesa 35
Sequence of Actions for an Update RequesStececsssccsccsccce 37
A Sample of Cluster-To-Traffic-Unit Table (CTUT)...cc.uces 60

The Traffic-Unit-To-Cluster Tabie (TUCT) Corresponding
to the cm in Figure 14..'..‘..'.......'........‘..‘..... 62

A Sample Walkthrough Reportecscecscsccscescecsssacascsscsne 69
A SSL Specification of a Program Procedur@..ccccsceccecsss 71
The Constructs Used in a Jackson Chart..ccccecececescscsees 74
A Sample Program StructUr@escccscecssesvescsncscsssscsvaccsans 79

The SSL Co;respondinf to the Sample Program
Structure in Figure I9

0 8000000000000 080 000000008000 COCCCEsSTETS 76

The Original Design for MDBS Controller....ccescceccsccceces 78

1.0 PROTOTYPING A MULTI-BACKEND DATABASE SYSTEM (MDBS)

Four approaches to the running of a database management system have been

proposed in the literature:

(1) Running the database management system along with all other software
on a single general-purpose computer, known as the host.

(2) Running the datzbase management system on a second general-purpose
computer system, known as the backend. This is known as the
single-backend software approach.

(3) Dcveloping a special-purpose database machine with spe 1ly designed
hardware to perform the database management functious., ‘his is known

as the database machine or hardware backend approach.

(4) Running the database management system on multiple ral-purpose
computers. This is known as the multi-backend softwa: -oach.

Database management systems built using the first approach have some
limitations, e.g., as the database grows and the rate of requests to database
system increases, the host computer performance decreases. Database manage-
ment systems built using the second approach have the same limitatiomn, i.e.,
the performance of the single-backend system also decreases. Thus, overall
performance of the host and backend will be degraded. The third approach may
be promising, but not until the cost-effec;iveness of this approach ie demon-

strated.

The fourth approach configures the backends in a parallel way for per-
formance improvement. It also allows growth in the database and increase in
the request rate without performance degradation and software complexity.
This approach requires the development of an innovative software design which
allows the addition of more backends of the same type and the replication of
the software on the new backends without major system interruption. Thus, it
does not require the development of any nev hardware, but only the develop-
ment of a new and replicable software architecture and a new and parallel
hardware configuration. This report is the second in a series [Kerr82] which

describes the development of a multi-backend database system known as MDBS as

a prototype for experimenting with the fourth approach.

PAGE 2

l.1 Logical Description of MDBS

In this section, we give a brief review of MDBS. Full details on the
design and analysis of MDBS can be found in [Hsia8la]l and (Hsia8lb]l. The

first report in this series [Kerr82) gives & more detailed overview.

1.1.1 The MDBS Hardware and Software Organization

An overview of MDBS hardware organization is shown in Figure 1. The
controller and the backends are connected by a broadcast bus. The controller
will broadcast each request to all backends at the same time over this bus,
Furthermore, there will be minimal broadcasting from one backend to the other

backends.

Each backend is given a number of dedicated disk drives, The data from
each file 1is distributed across all the backends. Each backend will then
process the data from its own disk drives. Because each file is spread
across all the backends, all backends can now execute the same request in
parallel. Request execution at a backend is handled by having a queue of re-
quests at the backend. When a backend finishes executing omne request it can
start executing the next request. In view of the execution mode, MDBS is a

multiple-instruction-and-multiple-data-stream (MIMD) organizatom.

The data model chosen for the system is the attribute-based data model

[B8ia70). In MDBS the database consists of files of records. Each record is
a collection of keywords, optionally followed by a record body. A keyword is
made of an attribute-value pair such as <SALARY,12000> where $12,000 is the
value of the attribute SALARY. A record b¢dy is a string of characters not

used by MDBS for search purposes. An example of a record without a record
body is shown below.
(<FILE,Employee>, <EMPLOYEE_NAME,Smith>, <CITY,Columbus>,
<SALARY,12000>, <SERVICE,10>) .
The first attribute-value pairs in all records of a file are the same. In
particular, the attribute is FILE and the value is the file name. For exam-
ple, the above record is from the Employee file. When dealing with the re-

cords of the same file, we frequently omit the first attribute-value pair,

To the
host
compute

Broadcasting
bus

Figure 1. The MDBS Hardware Organization

PAGE 3

one or more
disk drives

one or more
disk drives

one Or more
disk drives

e

PAGE 4
i.e., the file name, for illustratiom.

For performance reasons, records are logically grouped into clusters
based on the attribute values and attribute value ranges in the records.
These values and value ranges are called descriptors. For example, one clus-
ter might contain records for those employed in Columbus, making at least
$20,001 but not more than $25,000 and with at least 11 but not more than 15
years of service. Thus records of this cluster are grouped by the following
three descriptors:

(CITY=Columbus), (20001=<SALARY=<25000), (11=<SERVICE=<15).

MDBS performs its operatiomns by clusters. Thus finding records of employees
in Columbus making between $21,000 and $22,000 per year and with 12 to 13
years experience would require the retrieval of records im the cluster just
described. Other retrieval requests such as to find records of employees in
Columbus making between $21,000 and $28,000 and with 12 to 13 years experi-
ence might require additional retrieval of records from other clusters than

the one identified above.

In order to allow efficient processing of requests, records in a cluster
are spread across all the backends. Thus each backend needs to search only
its portion of the cluster. Given a user request, there wust be a way, of
course, first to determine which clusters to search and then to determine the
location of records in a given cluster, To perform this task, MDBS utilizes
available descriptor information. For example, given the previous request
for finding employees where

(CITY=Columbus) and (21000=<SALARY=<28000) and (12=<SERVICE=<13)
MDBS first determines that two clusters must be searched. These are the
clusters identified by the two sets of descriptors:
{ (CITY=Columbus), (20001=<SALARY=<25000), (11=<SERVICE=<15) }
{ (CITY=Columbus), (25001=<SALARY=<30000), (11=<SERVICE=<15) }
After the clusters are identified, MDBS must then determine the disk ad-
dresses of the clusters at each backend. Finally MDBS will cause each back-

end to retrieve from its disks the records so addressed.

The execution phases of a retrieval request are summariged in Figure 2.

Descriptor search determines the descriptors that correspond to the request.

; PAGE 5
L]
Directory N
Manayement
From the ’ -
available Fiom the
descriptors,” S ven " From the From the
', descriptor
determine | 1d given cluster given From the
those de:érminethe ids, ’ addresses, given
..-descriptors—-._clusters —edetermine theuldetermine . le-addresses,_ ..

(actually (actuall addresses of which retrieve the

; descriptor cluster ids) the records backends and | required
ids), which ’! in those disks to records.

whose records
. , zazrziszzdtm may satisfy clusters, search,
3 C) .
| requese. | Eheremsest. |, .
—— Boolean -
Retrieval " | Expression Cluster Disk
Request{Descriptoriof Cluster Ids Address Addresses |Record Results
} T3 - [2L 3
> Search Descriptor | Search Generation Processing
Ids

Figure 2. Execution Phases of a Retrieval Request

~mool g

PAGE 6

In our example, there are four descriptors corresponding to the request;
namely,
(CITY=Columbus), (20001=<SALARY=<25000),
(25001=<SALARY=<30000), (11=<SERVICE=<15).,
In order to save space and to save processing time each descriptor is identi-
fied by a descriptor id. For example, '

Descriptor Descriptor Id
{ CITY=Columbus) D15
(20001=<SALARY=<25000) D125
(25001=<SALARY=<30000) D126
(11=<SERVICE=<15) D250

Thus the output of the descriptor search phase is the Boolean expression of
descriptor ids
D15 and (D125 or D126) and D250 €9
cotresponding to
(20001=<SALARY=<25000)
(CITY=Columbus) and or and (11=<SERVICE=<15)
(25001 =<SALARY=<30000)

which identifies two clusters.

The next phase, cluster search, must take the Boolean expression in (1)

and actually determine the corresponding clusters. As with descriptors,

clusters are also identified by ids, known as cluster ids, for example
Descriptor 1ds Cluster 1d
D15, D125, D250 cl7
D15, pi26, D250 c22

The final two phases, see Figure 2, are gddress geperation (to find the
disk addresses, e.g., A3546 and A3547, corresponding to each cluster id,
e.g., Cl7) and record processing (to retrieve the actual records so addressed

and extract the fields required).

Descriptor search, cluster search and address generation together form
the major portion of directory management.

Concurrent processing of requests is facilitated in MDBS. Executing one
request at a time at a backend will frequently leave the backend”s CPU idle
while waiting for its disk to access records. Since the MDBS hardware organ-
ization provides multiple disk drives per backend, it is possible for & back-
end to support concurrent processing of requests from different users.
However, a mechanism to control concurrent access to data must then be pro-
vided. Because all directory management is based on the concept of clusters,
it is also logical to design a concurrency control mechanism based on clus-
ters. Thus, the mechanism used in MDBS is centered on the concept of clus-
ters. In particular, the concurrency control mechanism will lock clusters to

prevent conflicting access to the same clustered data.

The general method used by MDBS in processing a retrieval request is
described and summarized in Figure 3. In the next section, we will show how

this processing is carried out among the controller and the backends.

1.1.2 Distribution of Request Execution Among Controller and Backends

In the previous section, we mentioned how the database was distributed
across the backends. However, we did not discuss the plgcement of directory
data and the distribution of the directory processing im directory manage-
ment. In order to minimize the time for directory management and to facili-
tate record update, the directory data is duplicated at all backends. On the
other haund, the directory processing is not duplicated at each backend. For
instance, the descriptor search phase is divided among the backends. BRach
backend must find a different subset of descriptor ids. It them broadcasts

its results to all the other backends,

In Pigure 4, we summarize how directory management is performed at a
backend. A retrieval request is received from the controller. Then the
backend performs s descriptor search on its portiun of the request and broad-

PAGE 8 .

original function

r——-

]
I | future function
| |

— e - —

Boolean
Retrieval Expression Disk j
Request | Descriptorfof Cluster Address rA_'l.l_dl't‘-_”e_s...Record Regults
Search Descriptor | search Generation Processin
Ids)
] Authorized
Clus;:r Cluster Ids,
s Ready for Processing
- = - == ===
1 gi::;:r lAuthorizggl'Concurrency: i
! ICluster Ids 'Control :
L Control I

Figure 3. Execution of a Retrieval Request in the Presence
of Access Control and Concurrency Control

i ‘.-m -vg..,m‘——,——»_&~..-__«.-,.. - - N

PAGE 9

S IL 1] The (i--1)-th Backend
L: !
SN 1
i
1
‘ 1
j : AN ; |
i
l Descriptors Descriptors Found
' Found at the at all che other i
by i-th Backend Backends
| = are Broadcast
g 8 to all the
. - other Backends
; 8 The i-th Backend
H L]
. <
i v Y
‘ g Descriptorﬂ) All Cluste 3d Loca’
= > |PescriptogFound at [DescriptorpagceriptorsiClusteslds res Addr . .e-
o > |Search S Search Search ner- -
@ Backend ation .
5 1
g
v -
; S .
i 2 Descriptors Descriptors Found
: o Found at the at all the other
L 2 1-th Backend Backends
! are Broadcast
to all the
other Backends
The (i+1)~th Backend

i i

Figure 4. Overview of Directory Management
as Seen From The i-th Backend

—

PAGE 10

casts the resulting descriptor ids to the other backends. After the descrip-
tor ids from all other backends have been received, cluster search is used to
determine the clusters. Finally, address generation determines the local

disk addresses for records at that backend.

The backend can do more than just retrieve all the records in a cluster.
First, it can select those and only those records that satisfy the request.
For example, the request to find records of employees in Columbus earning
more than $20,000 but not more tham $28,000 and with more than 10 but not
more than 15 years experience, requires ;glgg;inﬁ‘;gggzgg from two clusters,
Those clusters are identified by

(CITY=Columbus) and (20001=<SALARY=<25000) and (11=<SERVICE=<15)
and
(CITY=Columbus) and (25001=<SALARY=<30000) and (11=<SERVICE=<15).
All the records will be selected from the first cluster, but only records
with SALARY=<$28,000 will be selected from the second cluster.

Often, not all the data in a record is needed to respond to a request.
In this example, only the names of the employees might be required. Thus the
appropriate values must be extracted from the record. The other values may
be discarded. Although not shown in this example, MDBS can perform various
types of aggregate operations on a set of values instead of just Eetutning
the raw values. An example would be to find the average salary of employees
who live in Columbus. Thus after selecting the appropriate records and ex-
tracting the salary values, MDBS would compute the average. The steps of

record processing are summarized in Figure 5.

Referring to Figure 6, the execution of & user request can now be sum-
marized as follows. The user submits a request to the host which transmits
that request, in an internal form, to the controller of MDBS. The controller
parses the request and then broadcasts it to the backends. Each backend de-
termines its portion of the descriptor ids and broadcasts the results to the
other backends. Each backend also determines the clusters that must be
searched and the corresponding local disk addresses. Then the appropriate

records are selected, values extracted and results sent back to the controll-
er. When the controller has received the results from all the backends, it

PAGE 11

P o R A T

Record Processing

-

; Local Disk Record Records Value Values Aggregate | Results
; Addresses Selection Extraction Operation§—"
: (from Directory] l

Management)

Figure 5. Record Processing Function

| I S
¢

PAGE 12

Host

‘ MDBS

Con-
troller

/ \ AN
/ \ ' N
~

/ \ N

j , J
Broadcast

J/ \ ™ Parallel '

Back- e o Back- Back-
end end end

Broadcast lode

+ Controller-to-all-backends operation (e.g., query)
* Backend-to-all-other-backends operations (e.g., transferring

descriptor ids)

Parallel Mode
- Response-of-each~backend-to-controller operations (e.g., forwarding
retrieved data) .

Figure 6. Modes of MDBS Operations

A e -

PAGE 13

performs any aggregate operation required and then forwards the final results

to the host for return to the user.

1.2 The Implementation Strategy - What and Why?

It seems only reasonable to develop most systems in stages. For proto-
type systems such an approach sSeems even more important. Thus we have
planned to develop several versions of MDBS. We chose to begin with an im-

plemention of a very simple system.

1.2.1 Version I ~ A Very Simple System: Single Mini Without Concurrency
Control and With Simplified Directory Management

We started the implementation effort with a system which was intended to
be as simple as possible. The aim was to get something running so that we
could gain some experience with both the MDBS design and our new computer
systems. Thus we had chosen to simplify the design as much as possible.
MDBS-I, which is in the final stages of implementation, executes only a sin-
gle request at a time, It runs on a single computer. There is no distimnc-
tion made about the slave and master. In other words, there is no separate
controller. Directory management is simplified by storing all directory data
in the main memory. There are no concurrent execution of requests. Since
the whole system runs as a single operating system process, the interface

vith the operating system is minimized.

1.2.2 Version II - A Simple System: Single Mini With Concurrency Comtrol

The second version, whose details have been designed and the implementa-
tion effort is under way, will allow concurrent execution of requests, but
will still be restricted to a single mini, We plan to use the services of
our operating system to facilitate this concurrent processing. Thus we will
use the capability of creating independent comcurrent processes which commun-
icate smong themselves. These processes will execute in parallel so that
MDBS-II will be able to execute requests in parallel. This version will

allowv us to gain experience with the problem of multiple processes and the

problem of concurrency control.

1.2.3 Version III - The First "Real" System : Multiple Minis With
Concurrency Control

After MDBS-II is working, we will transfer the system to our real envi-
ronment including a controller (i.e., VAX 11/780) and several backends (PDP
11/448). This transfer should be fairly easy, since the major changes re-
quired will be to replace communications between processes in one computer by
communications between processes running on different computers. This ver-
sion will allow us to see how the intercomputer communication overhead is
going to affect system performance. This system, MDBS-III, will still not be
sufficient for a full MDBS, since it has a very simplified directory manage-
ment subsystem., However, it will allow us to begin preliminary testing of
the MDBS design.

1.2.4 Version IV - The Real System With "Good" Directory Management

This version, whose design details are being proposed, will include a
fully implemented directory management subsystem utilizing the secondary mem-
ories. it will be a complete prototype system, except for the lack of access
control features. This system, MDBS~-IV, will bé the one on which we will try
to validate the simulation studies used in the development of the original
design.

1.2.5 Version V - The Full System With All the Designed Features Included

The final version will incorporate access control in the backends and a

friendly user-interface in the comntroller or host computer.

1.3 An Overviewv of the MDBS Igplementgtjon

In this section, we give an overview of the implementation effort to

date. The recent implementations are described in more detail in later

i - i e 4 — " ot ittt "—‘mﬁ
: X

PAGE 15 i

chapters. Details on our earlier implementation effort can be found in
. [Rerr82].

1.3.1 A Top-level View of MDBS

The MDBS is viewed in terms of controller functions and backends func-
tions (see Figure 7). In the following two sections, we describe the func-
tions performed in the controller and the backends, respectively. Then we
will describe the process of request execution for four types of request:

delete, insert, retrieve and update.

There are, however, some essential functions which are nmot included in
either of these divisions. Among these are system generation, system
startup/shutdown, and other system utilities such as database load, file gen-
eration and database reorganization., These functions will generally be ini-
tiated in the minicomputer which serves as the MDBS controller. They are

not, however, a logical part of the major functions of the controller.

1.3.2 Functions of the Controller F

The MDBS controller consists of three categories of fumnctions: request
preparation, insert information generation and post processing (see Figure 7
again). The request preparation functions are those which must be performed
before a request or a transaction can be broadcasted to the backends. For
example, each request must be parsed and checked for syntax errors before it . 1

can be broadcasted to the backends, The insert information generation

1 functions are those which must be performed during the processing of an in-
sert request to furnish additional information required by the backends. For
example, a backend should be selected for storing the record being inserted
into the secondary storage of the backend. The post processing functions are

those which must be performed after replies are returned from the backends,

! but before the results of a request or a transaction are forwarded to the
! host machine. For example, the results for a request returned by each back-

end should be collected., After receiving the results from each backend, the

response to the request can be sent to the host machine.

PAGE 16

The Huiti-Backend Database System
(MDBS) “

o /X
Computers in | coxtrotzer !

BACKENDS l
Carrying out : i ‘ ‘

‘ l
the Functions — K
| ‘ l

‘ \
Categories [eqregr | [TNSFRT » \ [s0st lgzggcrog‘_r \ ﬁsconn > [coscurrency
! OREPARA |, ANFURMATION - LAANAG i 1 PROCESSING CONTROL
‘ » : OCESSING | MANAGEMENT
of Functions \PP.EPA\R.\TION/ \csxsmrm}aj \PR S] \ A v

Figure 7. The MDBS Structure

31 —— o . = , ¥ Y - e ..__-M———;'=======1

|

PAGE 17

We note that there are no concurrency control functions in the controll-
er. Since wuser requests are carried out by the backends, there is no need]
for concurrency control in the controller. The controller must only associ-

ate sequence numbers with the user requests.

1.3.3 Functions of each Backend

Each backend in MDBS consists of three categories of functions:
directory management, record processing and concurrency control (also in Fig- |
ure 7). The directory management functions perform descriptor search, clus-
ter search, address generation and directory table maintenance. For example,
these functions find the ids of descriptors corresponding to a set of predi-
cates (keywords), determine the cluster id corresponding to a set of descrip-
tors and determine the secondary storage addresses of the records in a clus-
ter. The record processing functions perform record storage, record retriev-
al, record selection and attribute value extraction of the retrieved records.
For example, these functions store records into the secondary storage,
retrieve records from the secondary storage and select the records that
satisfy a query from a set of records. The concurrency control functions
perform operations which ensure that the concurrent and interleaved execution
of user requests will keep the database consistent. For example, these fuc-

tions schedul: a user request for execution based on the set of clusters

needed by <(he request. In this chapter, we do not consider concurrent and
1 interleaved execution of user requests. The concurrency control mechanism is

described in Chapter 4.

' 1.3.4 Request Execution in MDBS

In this section, we describe briefly the sequence of actions taken by
; MDBS in executing insert requests and non-insert requests (delete, retrieve
and update). The sequence of actions is described in terms of flow of data
and in terms of the functions categorized above. The sequenece of actions
- taken by MDBS in executing each of the four types of request: insert, de-

lete, retrieve and update is described in more detail in the later chapters.

P

PAGE 18

(A) Sequence of Actions for an Insert Request

The sequence of actions for an insert request is shown in Pigure 8.
Some flow of data is common to all types of request, shown as dotted lines in
the figure. Thus, we first describe these common data flows. The arrow
entering Request Preparation indicates that a request or a transaction is the
input to this module. The input comes from the host machine. Request Pre-
paration sends the number of requests in a transaction to Post Processing.,
The number of requests in a transaction is used by Post Processing to deter-
mine whether processing of the transaction is complete. Request Preparation
also sends a request (transaction) along with error messages to Post Process-
ing if the request (transaction) has syntax errors. Post Processing collects
all the results related to a request (transaction) and sends the results to
the host machine. The arrow leaving Directory Management indicates that the
descriptor ids found by a backend are sent to the other backends. The arrow
entering Directory Management indicates that the descriptor ids found by the

other backends are sent to this backend.

We now describe the flow of data specific to insert requests, shown as
solid lines in Figure 8. After receiving, parsing and formatting a request,
Request Preparation sends the formatted request to Directory Management in
the backends. We recall that the record part of the request consists of many
keywords and each backend performs the descriptor search for a different set
of keywords in the record. Thus, Directory Management at a backend finds the
ids of descriptors corresponding to the set of keywords to be processed at
the backend and broadcasts the ids to the other backends. After receiving
the descriptor ids sent by the other backends, Directory Management deter~
mines the cluster id, if any, of the cluster to which the record belongs. It
then sends the cluster id to Insert Information Generation in the controller.
Insert Information Generation determines the backend at which the record is
to be inserted and broadcasts a message to Directory Management in the back-~
ends. The backends that are not to insert the record discard the record.
Directory Management in the backend that is to insert the record determines
the secondary storage address for inserting the record. That address and the
formatted request are then passed to Record Processing. Record Processing

stores the record into the secondary storage and sends a completion signal to

PAGE 19
A !
4 |
T 1
| THE CONTROLLER |
|]
) \/
POST REQUEST
PROCESSING PREPARATION
INSERT
INFORMATION
GENERATION !

\ A |
COMMUNICATION f&é;§‘§cg)
A\

(COMMUNTICATION INTERFACE \LX \

A\

RECORD \,/ /' DIRECTORY
PROCESSING /\ k MANAGEMENT

A BACKEND

Figure 8. Sequence of Actions for an Insert Request

. e L T

o e s e e e m— s a e

PAGE 20

Post Processing in the controller. Post Processing then sends a completion

signal to the host machine.

(B) Sequences of Actions for Non-insert Requests .

The sequences of actions for non-insert requests are all similar. Thus,
we describe the sequence of actions only for a retrieve request in this sec-
tion. This is shown in Figure 9. (Here, we assume that the retrieve request
was not caused by an update request. Details on retrieve requests caused by

update requests are given in Chapter 2.)

Request Preparation, after receiving, parsing and formatting a request,
sends the formatted request to Directory Management in the backends and the
aggregate operators, if any, in the request to Post Processing in the con-
troller. We recall that the query part of the request consists of many pred-
icates and each backend performs the descriptor search for a different set of
predicates in the query. Thus, Directory Management at a backend finds the

ids of descriptors corresponding to the set of predicates to be processed at

the backend and broadcasts the ids to the other backends. After receiving
the descriptor ids sent by the other backends, Directory Management deter-
mines the cluster ids., Finally, it determines the secondary storage ad-
dresses of the records in the clusters so identified and sends the record ad-
dresses and the formatted request to Record Processing. Record Processing
fetches the records from the secondary storage and selects the records that
satisfy the query. It then extracts the values from the selected records.
If aggregation is not needed, Record Processing sends the extracted values to
Post Processing in the controller, Post Processing collects all the results

related to the request and sends the results to the host machine.

I1f some aggregations are to be applied, Record Processing, after select-
ing the records and extracting the values, applies the aggregate operations
on the set of values. It then sends the results to Post Processing in the
controller. The partial results from all the backends are collected in Post
Processing. Post Processing performs the aggregate operations on the partial
results and sends the results to the host machine.

PAGE 21
A |
I }
4 T
| THE CONTROLLER |
. | |
| \
' POST j{ REQUEST
{ PROCESSING K PREPARATION
o | . \ 73 INSERT
INFORMATION
GENERATION
')
o [COMMUNICATION INTERFACE ' ,
*
[—~ —_——_—— >
L
| IR
(COMMUNICATION INTERFACE \,
!
I
WV W
RECORD \/ J/ DIRECTORY
PROCESSING /\ MANAGEMENT
t ;
|
A BACKEND }

Figure 9. Sequence of Actions for a Retrieve Request

N
ﬁ
ﬂ

PAGE 22

1.3.5 The Role of the Communication Interface

Let us now describe the boxes labeled Communication Interface in Pig-
ures 8 and 9. They provide the mechanism for communications between two .
functions in two different computers. There is a ccmmunication interface in
each computer, i.e., the controller and the backends, since certain functioms
in each computer must communicate with certain functions in the other com—
puters.

1.4 The Orgamization of the Rest of the Report

We describe in detail the MDBS implementation in the rest of this re-
port. In Chapter 2, we give a functional description of MDBS. The comtroll-
er and the backends functions are described in detail in Chapters 3 and 4,

respectively. A method for testing MDBS is described in Chapter 5. Finally

in Chapter 6, we summerize our software engineering experience.

PAGE 23

SRR et

2.0 A FUNCTIONAL DESCRIPTION OF MDBS

As described in the previous chapter and depicted in Figure 7, MDBS is
viewed in terms of controller functions and backend functions. In this
chapter, we describe the functions of the controller and backends in detasil.
We also describe in detail the process of request execution for four types of
request: delete, insert, retrieve and update.

2.1 Functions of the Controller !

The MDBS controller functions are considered in three categories:
request preparation, insert information generation and post processing. (As
described in Chapter 1, there are no concurrency control functions in the
controller.) In the following, we describe the functions of each of the three
categories. We will not discuss the system functions such as system
startup/shutdown in this section. We will describe a package for testing
MDBS in Chapter 5. Other details on the system functions such as database

load and file generation can be found in [Kerr82].

2,1.1 The Request Preparation Functions
These are the functions which must be perfomed before a request or a
transaction can be broadcasted to the backends. The names of the functions

are: Parser and Request Composer.

(A) The Parser Function f

This function parses the requests and checks for syntax errors. Input

to Parser comes from the host machine., The input is either a request or a
transaction, If the input request (transaction) is parsed correctly, then

. the parsed request (parsed transaction) is passed to Request Composer. If
the input request (transaction) contains syntax errors, Parser returns the

request (transaction) along with error messages to Reply Monitor. MDBS does

: not execute a transaction unless all the requests in the transaction are

parsed correctly, i.e., a tramsaction is rejected if one or more requests

contain syntax errxors.

- S BT
g) A %

PAGE 24

For retrieve requests with aggregate operators, Parser sends the type of
aggregate operators (AVG, MAX, MIN, SUM, COUNT) to Aggregate Post Operatiom
where the specific aggregate operations are to be performed on the partial

results to be returned by the backends.

When the input to Parser is a transaction, Parser passes the number of
requests in the transaction to Reply Monitor. The number of requests in a
transaction is used by Reply Monitor to determine whether the processing of

the transaction is complete.
(B) The Request Composer Function

Before describing this function, let us review the update requests in

MDBS., The syntax of am update request is:
UPDATE Query Modifier

where the modifier specifies the kinds of modification that need to be done
on zecords that satisfy the query. The modifier may be one of the following
five types:

Type-0 : <attributé-constant>
<attribute=f(attribute)>

(X3

Type-1
: Type-I1 : <attribute=f(attributel)>

Type-III : <attribute=f(attributel) of Query>
Type-IV : <attribute=f(attributel) of Pointer>

Let a record whose attribute is being modified be referred to as the
record being modified. Then, a type-0 modifier sets the new value of the at-
tribute being modified to a constant. A type-I modifier sets the new value
of the attribute being modified to be some function of its old value in the
record being modified. A type~II modifier sets the new value of the attri-

bute being modified to be some function of some other attribute value in

the record being modified. A type-III modifier sets the new value of the at-
tribute being modified to be some function of some other attribute value in
snother record uniquely identified by the query in the modifier. Finally, a

type-IV wmodifier sets the new value of the attribute being modified to be

PAGE 25

some function of some other attribute value in another record identified by

the pointer in the modifier.

An example of a type-0 modifier is:
<SALARY=50000>
This sets the salary in all the recordt being modified to 50000.

An example of a type-I modifier is:
<SALARY=1.1*SALARY>
This raises the salary in all the records being modified by 10Z.

An example of a type-II modifier is:
<MONTHSAL=YEARSAL/12>
This sets the monthly salary in all the records being modified to be a

tvelfth of their own yearly salaries.

An example of a type-III modifier is:
<SALARY=SALARY of (FILE=Wife) and (NAME=Tara)>.
This causes the following actions to be taken by MDBS. Using the query
“(FILE=Wife) and (NAME=Tara)", a record is retrieved. Then, the SALARY value
of that record is obtained., This value is used for the salary in all the re-

cords being modified.

An example of a type-IV modifier is:
<SALARY=SALARY of 2000>
vhich modifies the salary in all the records being modified to that of the
record stored in location 2000. In order to use this type of modifier, the
user must have previously issued a retrieve request which had WITH POINTER
option. We note that, in order to execute an update request containing a
type~1II or type-1V modifier, a record must first be retrieved by MDBS on the
basis of a user-provided query or pointer. We now describe the Request Com-

posexr function.

This function transforms a parsed request into the form required for
processing at the backends. Request Composer receives each parsed request

(parsed transaction) from Parser. For all requests except updates with

BRERAITET 0 oy

PAGE 26

type-I1II or type-IV modifier, Request Composer formats the request and sends
it to the backends for processing. For update requests with type-III or
type-IV modifier, Request Composer first generates a retrieve request. It
then saves all the information necessary to generate an update request with
type-0 modifier when the value from the retrieve request is received. When
the value is received from a backend, the update request with type-0 modifier
will be generated and sent to the backends.

Processing an update request may cause one or more updated records to
change cluster. When this occurs, the old records should be marked for dele-~
tion and the updated records should be inserted. Request Composer initiates
the actions required for the insertion of the updated records that change

cluster.

2.1.2 The Insert Information Generation Functions

These are the functions which must be performed during the processing of
an insert request to furnish additional information required by the backends.
The names of the functions are: Backend Selector, Cluster Id Genmerator and

Descriptor Id Generator.

(A) The Backend Selector Function

When processing an insert request, Backend Selector determines the back-
end at which the record is to be inserted. The backend selection is based on
the criterion that the records in each cluster should be distributed among
the backends. (As described in Chapter 1, the records in each cluster are
spread across the backends to allow the records in the cluster to be accessed

in parallel.)

(B) The Cluster 1d Generator Function

In order to save storage and time, each cluster is identified by a clus-
ter id, instead of being identified by a set of descriptors which character-
ize the cluster. Cluster Id Generator produces a new cluster id for & new

cluster.

PAGE 27

(C) The Descriptor Id Generator Function

To further save storage and time, each descriptor is also identified by
a descriptor id, instead of being identified by an attribute and its attri-
bute value (attribute value ranges). Descriptor Id Generator produces a new

descriptor id for a new descriptor.

2.1.3 The Post Processing Functions

Before the results of a request or a transaction are forwarded to the
host machine, these functions must be performed on the replies returned by
the backends, The names of the functions are: Aggregate Post Operation and

Reply Monitor.
(A) The Aggregate Post Operation Function

When there is an aggregate operator in a retrieve request, each backend
performs the aggregate operation on those records in that backend satisfying
the query. The partial aggregate results are sent to Aggregate Post Opera-
tion by the backends. Parser sends the type of aggregate operator (AVG, MAX,
MIN, SUM, COUNT) to Aggregate Post Operation where the partial results are
received from the backends and are combined to give the final result of the
specific aggregate operation. The results are then forwarded to Reply Moni-

tor -
(B) The Reply Monitor Function

This function collects all the results for a request or a transaction,
and forwards them to the host machine. As described earlier, Parser sends
the number of requests in a transaction to Reply Monitor. Reply Monitor uses
this number to determine whether the processing of the transaction is com—

plete.

PAGE 28

2.2 Functions of each Backend

Each backend in MDBS consists of three categories of functions:
directory management, record processing and concurrency control (see Figure 7
again). (As in Chapter 1, we do not consider concurrent and interleaved exe-
cution of user requests in this chapter. We describe the concurrency con-
trol mechanism in Chapter 4.) In the following sections, we describe the
functions of each of the first two categories, i.e., directory management and

record processing.

2.2.1 The Directory Management Functions

These functions perform directory operations such as cluster determina-
tion, address generation and directory table maintenmance. The names of the

functions are: Descriptor Search, Cluster Search and Address Generation.
(A) The Descriptor Search Function

This function determines the descriptor ids of the descriptors that
satisfy the predicates (keywords) in a query (record). Input to Descriptor
Search comes from Request Composer in the controller, in the form of a for-]
matted request. As described in detail in [Hsia8la)], if there are N backends
processing a query (record) with X predicates (keywords), then each backend
performs the descriptor search on X/N predicates (keywords) and broadcasts

the descriptor ids to the other backends,
(B) The Cluster Search Function

This function determines either the cluster id of the cluster to which a

record belongs (for an insert request) or the cluster ids of the clusters

whose records satisfy a query (for a non-insert request). Input to Cluster .
Search are the descriptor ids found by Descriptor Search in all the backends.
For insert requests, Cluster Search passes the cluster id, if any, to Backend
Selector in the controller. For non-insert requests, the cluster ids are

passed to Address Generationm.

[

PAGE 29

(C) The Address Generation Function

This function determines either the secondary storage address for stor-
ing a record when processing an insert request or the addresses of all the
records in a set of clusters when processing a non-insert request. For in-
sert requests, Backend Selector in the controller decermines which backend is
to insert the record. When a backend is selected, Address Generation in that
backend determines the secondary storage address for record insertion. That

address and the formatted request are then passed to Physical Data Operatiom.

For non-insert requests, Cluster Search passes the cluster ids to Ad-~
dress Generation. Address Generation finds the addresses of the records in
these clusters and passes the addreses and the formatted request to Physical

Data Operation.

2.2.2 The Record Processing Functions

These functions perform operations such as record selection and field
extraction of the retrieved records. The names of the functions are:

Physical Data Operation and Aggregate Operationm.

(A) The Physical Data Operation Function

Input to this function comes from Address Generation., The input is a
set of secondary storage addresses and a formatted request, Physical Data
Operation performs different actions depending on the type of the request.
For an insert request, Physical Data Operation stores the record being in-

serted into the secondary storage.

For a non-insert, i.e., delete, retrieve or update, Physical Data Opera-
tion fetches the records from the seconiary storage and selects the records
that satisfy the query in the request. It then performs the intended opera-
tion on the basis of the type of the non—insert request. For delete re-

quests, Physical Data Operation marks the selected records for deletiom.

For retrieve requests, Physical Data Operation extracts the values from

the selected records and passes the values either to Aggregate Operatiom, if

an aggregation is to be applied, or to Reply Momitor, if aggregation is not

PAGE 30

needed. For retrieve requests caused by update requests with type-III or
type-1IV modifier, Physical Data Operation sends the results to Request Com-—
poser in the controller. The results will be used in the controller to form
update requests with type-0 modifier from the update requests with type-III

or type—IV modifier.

For update requests, Physical Data Operation updates the selected
records and returns to the secondary storage those updated records that have
not changed cluster. If one or more records change cluster, Physical Data
Operation marks the old records for deletion and sends the records that have
changed cluster to Request Composer in the controller. Request Composer ini-
tiates the actions required for the insertion of these records into their new

clusters.
(B) The Aggregate Operation Function

This function performs the partial aggregate operations in retrieve re-~

quests. Input to Aggregate Operation comes from Physical Data Operation in
the form of a set of values and the aggregate operators to be applied.
Aggregate Operation applies the aggregate operations on the set of values and

passes the results to Aggregate Post Operation in the controller.

2.3 Reguest Execution in MDBS

In this section, we describe in detail the sequence of actiuvns taken by
MDBS 1in executing each of the four types of request: insert, delete,
retrieve and update. As in Chapter 1, the sequence of actions is described

in terms of flow of data and in terms of functions presented earlier.

2.3.1 Sequence of Actions for Insert Requests

The sequence of actions for an insert request is shown in Figure 10. As
in Chapter 1, we first describe the flow of data common to all types of re-
quest, shown as dotted lines in Figure 10. The arrow entering Parser indi-

cates that a request or a transaction is the input to this function. The

PAGE 31

THE CONTROLLER

MONITOR

AGGREGATE
POST

I ISSsADMLE 1Soud

IPIRATION

)

PARSER

N\

REQUEST
COMPOSER

/

NOLIVHIVIARD LsHnday

tCTOR

_/l CLUSTER INSERT |
™ TNTORMATION
GENERATOR CENERATION i

!
W l
; DESCRIP’TOR\ '
|
{
|

A __ / .‘
COMMINIONTION INTERThT
\ //L [’¥ 10 NTER 1 /
/ \ VA]
o\ e
7 | Y

*fo& I

COMMUNTIEA
1

1 1

\

[

/ ’
II,ADDRESS CLUSTER

SEARCH

;

SEARCH

DESCRIPTOR

PHYSICAL
DATA
OPERATION

AGGREGATE

OPERATION

RECORD PROCIUSSING

A BACKEMD

Figure 10. Sequence of Actions for an Insert Request

PAGE 32

input comes from the host machine. Parser sends the number of requests in a
transaction to Reply Monitor. The number of requests in a transactiom is
used by Reply Monitor to determine whether the processing of the transaction
is complete. Pérser also sends a request (transaction) along with error mes-
sages to Reply Monitor if the request (transaction) has syntax errors. Reply
Monitor collects all the results related to a request (transaction) and sends
them to the host machine. The arrow leaving Descriptor Search indicates that
the descriptor ids found by a backend are sent to the other backends. The
arrow entering Cluster Search indicates that the descriptor ids found by the

other backends are sent to this backend.

We now describe the flow of data specific to imsert requests, shown as
solid 1lines in Figure 10. Parser, after receiving and parsing a request,
sends the parsed request to Request Composer. After transforming the parsed
request into the form required for processing at the backends, Request Com—
poser sends the formatted request to Descriptor Search in the backends., We
recall that the record part of the request consists of many keywords and each
backend performs the descriptor search for a different set of keywords in the
record. Thus, Descriptor Search at a backend finds the ids of descriptors
corresponding to the set of keywords to be processed at the backend,
broadcasts the ids to the other backends and forwards them to Cluster Search.
Cluster Search determines the cluster id, if any, of the cluster to which the
record belongs. It then sends the cluster id to Backend Selector in the con-
troller. Backend Selector determines the backend at which the record is to
be inserted and broadcasts a message to Address Generation in the backends.
The backends that are not to inmsert the record discard the record. Address
Generation in the backend that is to insert the record determines the secon-
dary storage address for storing the record. That address and the formatted
request are then passed to Physical Data Operation, Physical Data Operatiomn
stores the record into the secondary storage and sends a completion signal to .
Reply Monitor in the controller. Reply Monitor then sends a completion sig-

1 nal to the host machine. .

2.3.2 Sequence of Actions tor Delete Requests

The sequence of actions for a delete request is shown in Figure 1l.

—

PAGE 33

ONESSHDO0%E LSOd

THE CONTROLLER

AGGREGATE
POST

QPTRATION

-——— - v— e — —tn

CLUSTER INSERT
w TUFIRMATION
GENERATOR GENERATION

ToR, |
BACKEY S5 cRIFTO > ;

: \

| sz::croTJ// Srveraan =
! CINERATOR

/ y)

—_— e e

PARSER 2
=
=
2
z

N =

z

REQUEST z
COMPOSER z

COMMUNTCATION INTERFALE

!]
COMMUNTEATION INTERFACE /
/
[}

,4<Doazss
GENERATION

CLUSTER

SEARCH SEARCH

DESCRIPTOR

DIRECTORY MANAGEMENT

AN

PHYSTCAL
DATA
OPERATION

AGGREGATE

OPERATION

RECORD PROCESSING

A BACKEND

Figure 11.

Sequence of Actions for a Delete Request

PAGE 34

Parser, after receiving and parsing a request, sends the parsed request to

Request Composer. After transforming the parsed request into the form re-~
H quired for processing at the backends, Request Composer sends the formatted
request to Descriptor Search in the backends. Descriptor Search at a backend
finds the ids of descriptors corresponding to the set of predicates to be
processed at the backend, broadcasts them to the other backends and forwards
them to Cluster Search. Cluster Search determines the cluster ids and gives
them to Address Generation. Address Generation determines the secondary sto-
rage addresses of the records in these clusters and sends the record ad-
dresses and the formatted request to Physical Data Operation. Physical Data
Operation fetches the records from the secondary storage. It then selects i
] the records that satisfy the query, marks the selected records for deletion,
H returns them to the secondary storage and sends a completion signal to Reply

Monitor in the controller.

2.3.3 Sequence of Actions for Retrieve Requests

The sequence of actions for a retrieve request is shown in Figure 12.
Parser, after receiving and parsing a request, sends the parsed request to
Request Composer and the aggregate operators, if amy, in the request to Ag-

gregate Post Operation, The sequence of actions taken by Request Composer,

Descriptor Search, Cluster Search, Address Gemeration and Physical Data Oper-
ation (up to the selection of the records that satisfy the query) is the same
as the other non-insert request, i.e., delete. Thus, we do mnot repeat it

here.

If the retrieve request was not caused by an update request, Physical
Data Operation extracts the values from the selected records. If aggregation
is not needed, Physical Data Operation sends the extracted values to Reply
Monitor in the controller. If some aggregations are to be applied, Physical
Data Operation passes the extracted values along with the aggregate operators
to Aggregate Operation. Aggregate Operation applies the aggregate operations
on the set of values and sends the results to Aggregate Post Operation in the
controller. The partial aggregate results from all the backends are collect-
ed in Aggregate Post Operation., Aggregate Post Operation performs the aggre-
gate operations on the partial results. The results are then forwarded to

I

PAGE 35

INTSSEADONE LS0d

THE CONTROLLER

MONITOR

AGGREGATE
BOST

CPERATION

CLUSTER THSERT
by INFORMATION
GENERATOR GENERATION

_—— e . - — - -

|

PARSER

NOLIVIVAARE 153anba

REQUEST \\>
COMPOSER

('\

COMONTCATION INTERFACE

S Y S ——

R

ATION INTERFACE

T
(8]
o
>3
é
~
<T 1T 7

/' ADDRESS
CENERATION

DIRECTORY MANAGEMENT

DESCRIPTOR
SEARCH

PHYSICAL
DATA
OPERATION

AGGREGATE
OPERATTION

N
}

_

RECORD PROCESSING

A BACKEND

Figure 12,

Sequence of Actions for a Retrieve Request

PAGE 36

Reply Monitor. Reply Monitor collects all the results related to the request

and sends the results to the host machine.

If the retrieve request was caused by an update request, Physical Data
Operation sends the result, if any, to Request Composer in the controller.
(The results will be used in the controller to form an update request with
type-0 modifier from the update request with type-III or type-1V modifier.)

2.3.4 Sequence of Actions for Update Requests

The sequence of actions for an update request is shown in Figure 13.
Parser, after receiving and parsing s request, sends the parsed request to
Request Composer. The sequence of actions will be different depending on the
type of modifier in the update request. We first describe the case where the
modifier is not type-III or type-1V. 1In this case, the sequence of actions
taken by Request Composer, Descriptor Search, Cluster Search, Address Genera-
tion and Physical Data Operation (up to the selection of the records that
satisfy the query) is the same as the other non-insert request, i.e., delete.

Thus, we do not repeat it here.

Physical Data Operation updates the selected records. It then uses Des-
criptor Search to determine which updated records have changed cluster.
Physical Data Operation stores those updated records that have not changed
cluster into the secondary storage. It will then send a completion signal to
Reply Monitor in the controller if no updated record has changed cluster.

If one or more updated records change cluster, Physical Data Operation
marks the old records for deletion and sends the records that have changed
cluster to Request Composer in the controller. Request Composer initiates
the actions required for the insertion of these records into their new clus-—
ters. After these records are inserted, the original update request is com—

plete.

If the modifier in the update request is type~III or type-IV, Request
Composer in the controller first generates a retrieve request, It then saves

all the information necessary to generate an update request with type-0 mod-

—

PAGE 37

INTSSHOONE LSud

THE CONTROLLER

MONITOR

AGGRFGATE
PNST
OPEIRATION

TIMNSERT
INTORMATION
GENERATION

/ cusTer \
\E_aw‘esuron/

/DESCR!PTOR\
o]

SINTAMTOR

N~

>_L_

PARSER

REQUEST
COMPOSER

NOTIVIVAHNG Lsanbay

i

COMMUNTICATION I .\"!‘ERF\%.

{ |
e N | /o
r (l ‘J\ !J[
{ . com'.\.'l!:,\nos INTERFAC \ / |)
- I 7
\ N7

DESC
SEARCH

CLUSTER
SEARCH

/ADDRESS
CENERATION

DIRECTORY MANAGEYEN

RIPTOR

AN
W

PHYSTCAL
DATA

OPERATION

AGGREGATE

OPERATION

RECORD PROCESSING

A BACKEND

Figure 13,

Sequence of Actions for an Update Request

N - M

PAGE 38

ifier when the value from the retrieve request is received. When Request
Composer receives the value from Physical Data Operation, it generates the
update request with type-0 modifier and sends it to the backends. After this
new update request is executed to completion, the original update request is

complete. ‘

2.4 Process Structure of MDRS

Most operating systems provide mechanisms for allowing concurrent execu-
tion of different processes. These mechanisms include primitives for commun-
ication and synchronization among processes. Process communication and syn-
chronization primitives of the operating system are the basic system primi-
tives that MDBS-II utilizes for concurrent execution of multiple requests as

well as concurrent control of common resources.

2.4.1 Two Alternative Process Structures for Implementing MDBS

Process and synchronization primitives provided by the operating systems
3 may be characterized as either message-oriented or procedure-oriented, de-
pending on how they implement the notion of process and synchronization

3 [Laue79]. We could use either approach for implementing MDBS.

Using a message-oriented apprcach, there would be a fixed number of
processes (one process per MDBS activity). Directory management, for exam-

ple, may be implemented as a process. Synchronization of directory manage-

ment activities may be implemented by passing messages among processes.
: There would be a relatively limited amount of direct sharing of data in the
, memory among processes. Processes for each activity would be created when 1

MDBS is started up. They would be deleted only when MDBS is shut dowm.

Using a procedure-oriented approach, there would be a varying number of
processes (one process per user). Synchronization of user activities may be
implemented by direct sharing and locking of common data in the main memory.

Processes would be rapidly created and deleted.

PAGE 39

2.4.2 The Choice of Message-oriented Approach to Implement MDBS

The functional composition of MDBS described in the previous sections
allows either approach, message—oriented or procedure-oriented, to be used
for implementing MDBS. However, we have chosen to use message-oriented ap-
proach for the first implementation of MDBS-II. In this section, we give the

rationale behind our choice.

There are two major problems associated with the procedure-oriented ap-
proach [Ston8l]):

(1) Process switch overhead - When a process must be put to wait, a pro-
cess switch is necessary in order to run another process. Process
switching is costly because the information related to the blocked
process must be saved and the processor scheduler must conduct con-
siderable work to choose the next process to run. Since the proce-
dure~oriented approach causes more process switches than the
message-oriented approach, the process switch overhead is higher in
this approach.

(2) Critical sections -~ Some processes have critical sections in which
holds on locks are placed. If the processor scheduler deschedules a
process while it is in its critical section holding some locks over
some resource, all other processes will be queued up behind the
locked resource. Thus, the database system performance will be de-

graded,

The real~time operating system, RSX1l, being used in MDBS facilitates
message passing. It also allows a process to receive messages from multiple
proceses. Because of the aforementioned two problems with the
procedure~oriented approach and because of the environment provided by RSX1l,

we have decided to use the message-oriented approach.

PAGE 40

3.0 AN IMPLEMENTATION OF THE CONTROLLER FUNCTIONS

3.1 Design and Implementation Goals for the Controller

The primary goal in designing and implementing the controller subsystem
of MDBS is to alleviate the controller limitation problem, i.e., to limit the
amount of work that the controller must perform. The choice of a solution to
the controller limitation problem is prompted by another design and implemen-
tation goal for MDBS, that of mipimizing communjcatjion among the backends and
between the backends and the comtroller. Without increasing workload and ex-
cessive communication, the throughput of MDBS will continue to increase as

additional backends are added.

The controller limitation problem occurs in RDBM [Auer80], a relational
database machine, where a general-purpose minicomputer is used to control the
different hardware components of the system and to pre-process user requests.
Request pre-processing includes a detailed analysis of the request to deter-
mine the pages in the secondary wmemory to be accessed. The speed of the min-
icomputer is therefore a limiting factor to the throughput of RDBM. Consider
a simplified example where preprocessing a user request requires 10 seconds
of CPU time at the minicomputer, regardless of the number of backends in the

system., The throughput rate of RDBM is limited to 6 requests per minute.

Another view of the controller limitation problem is from the perspec~
tive of response time. The total response time of the system may be viewed
as the sum of controller execution time and backend execution time. Adding
more backends can decrease the backend execution time, but controller execu-
tion time remains constant. So in order to minimize request execution time,

ve must also minimize controller execution time.

Our controller design is based on the principle that the major portion
of the MDBS workload should be distributed among the backends, In adherence
to this principle, the controller is conceptually simple and includes primar~

ily those functioms which cannot be performed by the multiple backends,

PAGE 41

3.2 The Concept of "Traffic Unjt"

Input to MDBS originates from a user working at some host computer. The
host computer translates the user”s instructions into the MDBS Data Manipula~-
tion Language (DML) and transmits the translated requests to MDBS, This
transmission or "traffic" may take two forms: it may be a single request, or
it may be a transaction. BRecall that in MDBS terminology, a8 tramsaction is
defined to be a pre-specified set of requests which the user may use repeat-

edly. }

In order to generalize the description of input to MDBS, we introduce
the concept of a traffic unit. A traffic unit may be a single request or a
transaction. The identification of a traffic unit is important to the host,

since it must return to the user all output from MDBS associated with the

traffic unit. The recognition of a traffic unit as a single request or as a
transaction is also important to MDBS, since tramsactions must be processed

in a manner which preserves the consistency of the database. Since the

traffic unit is recognized in the host, we assume that the host will associ-

ate with each traffic unit currently in the system a unique identifier, which

we call the traffic id.

3.3 The Structure of the Controller

The MDBS Controller is implemented in three functionsl categories:
Request Preparation, Insert Information Generation, and Post Processing. The

Request Preparation functions include those which must be performed before a

request or transaction can be broadcasted to the backends. The Insert Infor-
F mation Generation functions include those which must be performed during the
processing of an insert request to furnish additional information required by
the backends. The Post Processing functions include those which must be per-
formed after replies are returned from the backends, but before results of a
request or a transaction are forwarded to the host machine. These three ca-
tegories of functions have been described in Chapter 2 of this report. In
this chapter, we present details of the implementations of these functioms.

PAGE 42

3.3.1 The Request Preparation Functions

The Request Preparation functions include the Parser and Request Com~
poser, The Parser function parses the requests and checks for syntax errors,
The Request Composer function transforms a parsed request into the form re-
quired for processing at the backends. These functions have been described

in Section 2.1.1. Here, ve emphasize the implementationm.

(A) The Parser Function

Parser does both lexical and syntactic analyses of the MDBS DML state-
ments. Input to Parser is in terms of a traffic unit, i.e. either a single
request or a group of requests which constitute a transaction. As described
in Section 2.1.1, the various outputs of the parser are the error messages

and aggregation operators to the Post Processing functions, and correctly

parsed requests to the Request Composer function.

The lexical analyzer was built using the LEX program available with the
UNIX operating system. LEX [Lesk79] is a lexical-analyzer gemerator which
can be used to generate programs in C. The inmput to LEX is a specification
of the tokens of the language (i.e., the tokens of the MDBS DML statements)
in regular expression form, and subroutines which specify the actions to be
taken upon recognition of the tokens. LEX generates a program in the C
language. This program includes a representation of a deterministic
finite-state sutomaton generated from the regular expressions of the source,
an interpreter which directs the control flow, and the subroutines from the
source. The 1lexical analyzer produced by LEX is easily interfaced with the

parser generated by YACC.

The parser was built using the YACC program available with UNIX. YACC
[John79], "Yet Another Compiler-Compiler”, was used to gemerate a parser
which calls the LEX-generated lexical analyzer for tokens, and organizes the
tokens according to rules of a grammar. When & rule is recognized, some
specified action is taken., The input to YACC is a specification which in-
cludes declarations of token names, the rewriting rules of the grammar, snd

Nt |

PAGE 43

action programs. YACC produces a C program, i.e., the parser, according to
the specification. The parser operates like a finite~state automaton with a
stack, The top-of-stack represents the current token. The parser also has
access to the next token, called the lookahead token. Using this simple me-
chanism, the parser can determine whether imput DML statements are syntacti-
cally correct. For a detailed explanation of YACC, see [John79].

(B) The Request Composer Function

The Request Composer receives parsed requests from the Parser, and
traneforms them into the form required for processing at the backends.
Recall from Section 2.1.1 that update requests with type-1Il and type-IV mod-
ifiers require Request Composer to generate a retrieve request, and a subse-
quent update request with a type—0 modifier. Request Composer also initates
the actions required for the insertion of updated records that have changed
cluster. Since the implementation of Request Composer is straightforward, it

will not be described further.

3.3.2 The Insert Information Generation Functions

Insert Information Generation consists of three functions: Backend Se-
lector, Cluster 1Id Generator, and Descriptor Id Generator. When processing
an insert request, the Backend Selector function determines the backend at
which the record is to be inserted. The Cluster Id Generator functiom pro-
duces new cluster ids for new clusters. The Descriptor Id Gemerator function
produces new descriptor ids for new descriptors. The functions are described
in Section 2.1.2. Before we describe any implementation details, let us re-

view the types of descriptors which are defined in MDBS.

As described in Chapter 1, records in the database are clustered on the
basis of attribute values and attribute value ranges called descriptors.
There are three types of descriptors: type-A, type-B, and type-C. A type-A
descriptor defines an inclusive range of values. BEach type-A descriptor is a
conjunction of a less-than-or-equal-to predicate and a greater~than-
or~equal-to predicate. An example of a type-A descriptor is:

((SALARY >= 2,000) and (SALARY =< 10,000))

e i - i ; e .

PAGE 44

A type-B descriptor defines a single value. Each type~B descriptor consists
of an equality predicate. An example of a type-B descriptor is:

(POSITION = Professor)
A type~C descriptor designates an attribute name as a type-C attribute., As
records are inserted into the database, a single~valued descriptor is created
for each unique value associated with the type~C attribute. These descrip-
tors, which are identical to type-B descriptors, are referred to as type~C

sub-descriptors.

Type-A and type-B descriptors, type-C attributes and type-C subde~
scriptors are created at database-load time, No additional descriptors canm
be defined after the database is loaded. Type~C sub-descriptors, however,

will be created dynamically as new records are inserted into the database.

(A) The Backend Selector Function

In order to conform to the data placement strategy described ir
[Hsia8lal, the controller must determine the backend at which the record is

to be inserted. This is the function of Backend Selector.

The information required for selecting the backend is maintained in the
cluster-id~to-next-backend table (CINBT). There is an entry in the table for
each cluster. Each entry contains the number of the next backend into which
records are to be inserted, and the remaining track capacity at that backend.
The CINBT is created at database load time., CINBT is implemented as a data
abstraction. The operations on this data abstraction, insert, find and up-

date, will be invoked by Backend Selector in accessing CINBT.

At the end of the descriptor search phase in processing an insert re-
quest, each backend will send to Insert Information Generation the cluater id
for the record to be inserted. Since the cluster-definition table (CDT) is
not replicated, backends at which no records of a cluster are stored will not
find a cluster id for that cluster. There is also the case where the record

being inserted has caused a new type-C sub~descriptor to be generated; in

PAGE 45

this case, no backends will return a cluster id. When Backend Selector de-
termines that all backends have responded, it will proceed to select the

backend at which the record is to be inmserted.

(B) The Cluster Id Generator Function

In order to save storage and time, each cluster is identified by a clus~
ter id. The Cluster Id Generator generates a new cluster id when there is a
new cluster. There are two cases which require a new cluster id. These

cases are described in (A) above,

(C) The Descriptor Id Generator Function

When an insert request contains a record with a type-C attribute and the
value associated with that attribute does not appear in a type-C
sub-descriptor, a new type-C sub-descriptor will be created. The assignment
of descriptor ids is handled by the Controller to prevent coincidental crea-
tion of different descriptor ids by the backends for the same descriptor. If
two simultaneous insert requests requiring the creation of the same type~C
sub-descriptor were processed by the backends independently, different des-
criptor ids would be assigned for the same descriptor. In MDBS, descriptors

must have unique ids.

Descriptor Id Generator will generate a new descriptor id when request-
ed, and broadcast descriptor id and descriptor to all backends. Descriptor
Id Generator will retain a list of all descriptors to which it has assigned
descriptor ids. This 1ist will be consulted each time & request for a new
descriptor id is received in order to prevent coincidental creation of dif-
ferent descriptor ids for the same descriptor., The list will also be purged

periodically.

3.3.3 The Post Processing Functions

The Post Processing functions include Aggregate Post Operation and Reply

PAGE 46

Monitor. The Aggregate Post Operation function performs the final aggregate
operation on partial aggregate results returned from the backends. The Reply
Monitor function collects all the results for a request or transaction, and
forwerds them to the host machine. These functions are described in Section

2.1.7. do further implementation details are presented here.

L 3.4 The Process Structure of the Controller

Since a message-oriented approach to concurrency control is being wused,
wve must choose a process structure for the Controller. There are several ob-

vious choices.

First, all of the functions of the Controller cam be combined into ome
process. This alternative is unattractive because it limits the Controller
to one function at a time. A greater degree of concurrency can be obtained
by using multiple processes and the multiprogramming facilities of the under-
lying operating system. A second alternative is to create a process for each
of the seven functions of the Controller. While this does allow a high de-
gree of concurrency, it is unattractive because of the message-passing

overhead.

A third alternative is to use a smaller number of processes to facili-
tate concurrency, while keeping the message-passing overhead at an acceptable
level. A good candidate organization is ome which parallels the categories
of functions which we have described above. There are three processes: the
Request Preparation process, the Insert Information Generation process, and
the Post Processing process. Look again at Figures 10, 11, 12 and 13 from
Chapter 2. These figures show the flow of data between Controller and Back-
ends functions for insert, delete, retrieve, and update requests. Requests
flow from the host through the Request Preparation process to the Backends,
and from the Backends through the Post Processing process to the host. In
the case of insert and update requests, the Insert Information Generation
process will be exchanging data with Directory Managment in the Backends. .
Notice that the only interprocess communication in the Controller will be

between the Request Preparstion and Post Processing processes. This is the
organization we adopt for the process structure of the MDBS Coantroller.

PAGE 47

4.0 AN IMPLEMENTATION OF BACKEND FUNCTIONS

As discussed in Sectiom 3.1, a basic design goal of MDBS is to assign at
much work as possible to the backends in order to alleviate the controller
limitation problem. Consequently, the backends functions are more complex
than those of the controller. The functions of the backends fall imto three

categories: Directory Management, Record Processing and Concurrency Comtrol.

The Directory Management functions perform directory operations such as
cluster determination, address generation, and directory table maintenance.
According to the incremental development strategy described in Chapter 1, two
versions of Directory Management will be developed. A simplified Directory
Management , where all directory information is stored in main memory, is des-
cribed in [Kerr82]. This simplified Directory Management will be used in the
first three versions of MDBS (MDBS-IV and V will employ a secondary-

memory-based directory management).

The Record Processing functions perform operations such as record selec-
tion and attribute value extraction. The design of these functions is des-

cribed in detail in Section 4.1.

A second design goal for MDBS is that the software should support con-
current execution of requests in the backends in order to maximize system
throughput. The cluster-based concurrency control functions, described in
[Hsia81b), will be implemented in Version II of MDBS. In Section 4.2, we

present a preliminary design of the Concurrency Control functioms.

4.1 The Record Processing Functions

The Record Processing functions are: Physical Data Operation and Aggre-
gate Operation. The Physical Data Operation function includes a control sub-
function and a subfunction for each type of request. The Retrieve Processing
Subfunction, the Insert Processing Subfunction, the Delete Processing Sub-
function, and the Update Processing Subfunction are invoked by the Control
Subfunction according to the type of request being processed. The Aggregate

Operation function includes subfunctions which accumulate partial aggregate

PAGE 48

results for a request when an aggregate operation is specified for an attri-
bute in the target-list. The Aggregate Operation Subfunctions are invoked

as required by the Retrieve Processing subfunction.

The Retrieve Processing subfunction, the Insert Processing subfunction,
the Delete Processing subfunction, and the Update Processing subfunction are
described in detail in the sections which follow. Here, we give a general

description of the Control subfunction.

The input to Record Processing comes from the Directory Management func-
tions. Input data includes:
(1) a request;
(2) a set of physical (disk) addresses of the tracks which contain
data relevant to the request;
(3) in the case of an insert request, an indicator which is used to
determine whether the record is to be placed on a new track.
The specific form of the output varies with the type of request; a general
description of the output is a signal to the Controller that execution of the

request is completed, and the results of executiom.

The sequence of events is as follows:
Step 1: Input is received from Directory Management.
Step 2: The proper subfunction is invoked according to the request
type.
Step 3: The results are sent to the Controller.

Step 4: A completion signal is sent to the Controller.
The results of a retrieve or an update request may include many records.

Thus, the results are buffered independently via a data sbstraction, the

Block_Buffer_ Abstraction, which is also described below.

4.1.1 The Block_Buffer_Abstraction

In MDBS, a cluster may correspond to more than one physical track of
data on the disk. Therefore, for one cluster, there may be more than ome

physical address in the set of addresses furnished to Record Processing by

PAGE 49

Directory Management. Dsta are accessed from or to the disk track by track.

8o, a fixed-length buffer can be used for input data.

The amount of output data varies from request to request. This implies
that, given a fixed-length output buffer, the Record Processing functions
must include logic to empty the output buffer whenm it is filled during execu-
tion of a request. In order to simplify the Record Processing functions, a
data abstraction is used to implement a virtual variable-lenmgth output
buffer. This techmique has two advantages. First, the Record Processing
functions will not need to include logic to monitor the state of the output
buffer., Second, all the logic required to use the communication interface
for sending results to the Controller can be localized in the code of the

data abstraction.

The Block_Buffer_Abstraction furnishes a data object, the Result_ Buffer,
and a set of operations. The operations include a function to reserve a
buffer, a function to stuff data into a buffer, and a function to flush a
partially filled buffer. The actual data structure used by the abstraction
is a fixed-length buffer. However, the stuff operation includes logic to
empty filled buffers. It appears to the user that the output buffer is as

large as required.

4.1.2 The Retrieve Processing Subfunction

A retrieve request has the form:
RETRIEVE Query Target-List [BY clause] [WITH pointer]
The purpose of the Retrieve Processing is to fetch the clusters of relevant
data from the disk, to select from the clusters of relevant data the records
satisfying the query, and to output the results according to the target-list
and the optional BY and WITH clauses.

The algorithm is as follows:
sﬁep 1: Reserve a result buffer.
Step 2: For each address in the set of track addresses furnished by
Directory Management, fetch the track from the disk into the

track buffer in the main memory.

ST

PAGE 50

Step 3: Examine the records in the track buffer one-~by-one. If a re-
cord is marked for deletion, disregard it. If a record does
not satisfy the query of the request, disregard it, If a re-~
cord satisfies the query of the request, extract the values
for the attribute namee in the target-list of the request;
if an aggregate operation is specified for an attribute on
the target-list, invoke the appropriate asggregation subfunc-
tion with the appropriste value. Stuff results from extrac~-
tion and/or aggregation into the result buffer. Repeat for
each record in the track buffer.

Step 4: Repeat steps 2 and 3 until the set of track addresses is ex-
hausted.

Step 5: Flush the result buffer.

If the optional WITH clause is included, a pointer or physical address
of the record is stuffed into the result buffer for each record. The option-
al BY clause is used in conjunction with an aggregate operator, as explained

in the next section.

4.1.3 The Aggregation Subfunctions

MDBS supports five aggregate operations on attributes in the target-list
of retrieve requests, These are AVG, SUM, COUNT, MAX and MIN. An example of
a target-list is:

(DEPT, AVG(SALARY))
Ro aggregate operator is specified for the attribute DEPT; the values of
DEPT will be retrieved from all records identified by the query. The aggre- ﬁ
gate operstor AVG will be applied to the values of SALARY retrieved from all
records identified by the query. Thus, the average salary will be obtained.

An optional BY clause may be used with an aggregate operator. Assume
that we wish to find the average salary of employees in each department.

This can be achieved by using a retrieve request with the target-list
(AVG(SALARY)) and the clause BY DEPT.

| The aggregation subfunctions are invoked by the Retrieve Processing sub-

e e e N /

PAGE 51

function as required. For AVG, a sum of values and a count is accumulated.
For SUM, a sum of values is accumulated. For COUNT, a count of values is ac-
cumulated. For MAX sgnd MIN, the maximum and minimum elements are selected.

4.1.4 The Insert Processing Subfunction

The insert request has the form:
INSERT Record
The purpose of the Insert Processing subfunction is to insert the record in
the request into a cluster. The record may be added to a partially-filled
track of data, or may be inserted as the first record of a newly allocated
track. The input to Record Processing for an insert request includes a
new~track indicator. Since only one record is being inserted into one track

of ome cluster, Directory Management will furnish only one track address.

The algoritom for the Insert Processing subfunction is very simple :

Step 1: 1If the new—track indicator is off (meaning that the record is
to be added to a track that already contains other records
from the cluster), then fetch the track from the disk into
the track buffer. If the new-track indicator is on, then in-
itialize the track buffer (no data are fetched from the
disk).

Step 2: Insert the record in the request into the track buffer.

Step J: Store the track buffer on the disk. i

4.1.5 The Update Processing Subfunction

The update request has the form:
UPDATE Query Modifier

The modifier in an update request specifies the new value to be taken by the

attribute being modified, The modifier may be one of the types described

below.
Type-0 : <attribute = constant>
Type-I ¢ <attribute = f(attribute)>
Type-II : <attribute » f(attributel)>

e —— e o

PAGE 52

Type-III : <attribute = f(attributel) of Query>
Type-IV : <attribute = f(attributel) of Pointer>

The Update Processing subfunction handles requests with modifiers of
type-0, I or II. An update request with the modifier of type~III or type-IV
is decomposed by the Controller into a retrieve request followed by an update
request of type-0.

The main function of Update Processing subfunction is to select records
satisfying the query and to update the value of the attribute specified by
the modifier. When a type-0 modifier is specified, the new value is the con-
stant from the modifier. When a type-I modifier is specified, the new value
is a function of the old value. When a type-II modifier is specified, the

new value is a function of the value of some other attribute in the record.

If the attribute being updated is a directory attribute, the updated re-
cord may change cluster. This occurs when the updated value does not corres-—
pond to the same descriptors as the value before update. In this case, the
set of Jdescriptors which can be derived from the record is not the same as
the set of descriptors which defines the current cluster. If the updated re-
cord changes cluster, then the original record is marked for deletion and the
updated record is sent to Request Composer in the Controller. Request Com-
p~cer will generate an insert request for the updated record. If the updated
record does not change cluster, them it is simply rewritten in the same clus-

ter.

The algorithm is as follows:

Step 1: Reserve a result buffer.

Step 2: For each address in the set of track addresses furnished by
Directory Management, fetch the track from the disk into the
track buffer in the main memory.

Step 3: Examine the records in the track buffer onsa~by-one. If a re-~
cord is marked for deletion, disregard it. If a record does
not satisfy the query of the request, disregard it. If a re-
cord satisfies the query of the request, compute the new
value according to the modifier and update the record in the

PAGE 53

track buffer. Check the updated record to determine whether
it changes cluster. If it does, then the updated record is
added to the result buffer and marked for deletion from the
track buffer,

Step 4: After all of the records in the track buffer have been exam—
ined, store the track buffer back to the disk.

Step 5: Repeat Step 2 through Step 4 until the set of track addresses
is exhausted.

Step 6: Flush the result buffer and send the results to Request Com-

poser in the comtroller.

4.1.6 The Delete Processing Subfunction

The delete request has the form:
DELETE Query
The purpose of the Delete Processing subfunction is to delete all the records
satiefying the query. Records are not physically deleted from the database.
They are instead marked for deletion. Records will be physically deleted

only when the database is reorganized.

The algorithm is as follows:

Step 1: For each address in the set of track addresses furnished by
Directory Management, fetch the track from the disk into the
track buffer in the main memory.

Step 2: Examine the records in the track buffer one-by-one. If a re~
cord is marked for deletion, disregard it. If a record does
not satisfy the query of the request, disregard it. If a re-
cord satisfies the query of the request, set a deletion flag
in the record.

Step 3: Repeat Step 1 and Step 2 until the set of track addresses is
exhausted, }

. Step 4: Store the track buffer on the disk.

PAGE 54

4.2 Comcurrency Control

In the previous sections, all consideration of the concurrent execution
of requests has been omitted. However as was mentioned in Chapter 1, the
backends must allow concurrent execution of requests in order to assure effi-
cient processing of the requests. This section will first present a brief
review of the concurrency control mechanism which was described in detail in

[Heia81b]. Then it will provide more details concerning the implementationm.

Concurrency control is a mechanism by which we will insure the consis~
tency of the database wvhile allowing concurrent execution of multiple re-
quests. To insure the consistency of the data, locke are wutilized. These
locks are administered at the cluster level (i.e., individual clusters are
locked). There are five phases of execution of & request in the presence of
access control and concurrency control. First, directory management deter-
mines the clusters needed by the request. Second, cluster access control de-
termines the authorized clusters. Third, concurrency control determines when
all clusters needed by the request are available. Fourth, address generation
determines the record addresses. Finally, record processing actually exe-

cutes the request.

4,2.1 Two Types of Consistency

The MDBS Concurrency Control mechanism differs from others in the types
of locks as well as in their utilization, The mechanism distinguishes the
four types of requests (Update, Retrieve, Insert, and Delete) and utilizes a
different lock mode for each type.

There are two types of consistencies which must be assured. The first
type of consistency is called inter—-consigtency. One example of the type of
problem we are concerned with is two concurrent updates of & record, which
might result in the loss of one of the updates. This problem must be consi-
dered in both single and multiple backend systems. To preserve
inter-consistency, non-concurrent execution must be assured among requests
vhich may have different results when executed simultaneously. Requests
vhich may execute concurrently are called compatible requests. The compati-
bility of two requests depends on the mode of access, e.g., two retrieve re-

quests are compatible whereas two update requests are not. When considering

e e

PAGE 55

2 nev request, if the mode of the new request is not compatible with that of
one of the earlier requests which is executing, then the execution of the new
request must be delayed. Thus the MDBS concurrency mechanism locks clusters

80 that only compatible requests can be using a cluster at the same time.

As just described, requests are executed at the backends in the order
they are received from the controller. Sometimes for performance reasons,
howvever, it may be desirable to permute the order of execution of two re-
quests that are not compatible. For example, suppose a sequence of three re-
quests Rl, R2 and R3 are received and Rl requires cluster Cl, R2 requires
clusters Cl and C2, while R3 requires cluster C2. In a single backend sys-
tem, it would be possible to permute the execution of requests R2 and R3, al-
lowing R3 to execute concurrently with Rl since Rl and R3 require different
clustere. In order to permute the order of execution of requests in a
multi-backend system, however, a mechanism must be found to assure that all
backends execute the requests in the same order. Otherwise inconsistent re-
sults can again occur., Thus in a multi-backend system it is also necessary
to assure intra-comsistency, i.e., requests that are not compatible must exe-
cute in the same order at all backends.

A general mechanism to allow the permutation of requests that are not
compatible would be complex because it would require communication among all
the backends. However s simple mechanism can be found that will handle the
special case involving an insert request. The actual insertion of a new re-
cord is performed at only one backend., It is not distributed across all the
backends., Therefore, if the backends are allowed to permute a non-insert re-
quest and an insert request, then the effectjve order of execution of the re-
quests at all the backends is the order used by the backend which actually
performs the insertion. In general, two requests that are not compatible are
called permutable if they do not have to be executed in the same order at all
the backends. Thus we see that an insert request and a nom-insert request
are permutable and we can assure intra-consistency if we permute the execu~

tion order only of permutable requests,

The compatibility and permutability of requests can be summarized as
follows:

PAGE 56

Delete Insert Update Retrieve
Delete c P N N
Insert P c P P
Update N P N N
Retrieve N P N c

C = Compatible
P = Permutable
N = Not permutable and not compatible

This table shows that two delete requests, or two insert requests or two
retrieve requests are compatible because they can be executed concurrently
without the possibility of inconsistency developing. It also shows that an
insert request can be permuted with a non-insert request, i.e., a delete, an
update or a retrieve. As was explained above, this permutability of an in-
sert request with a non-insert request is due to the fact that the actual in-
sert occurs at only one backend. Orly the delete, update or retrieve is ac-
tually performed at all the backends. Thus the effect is the same as it
would have been if all the backends executed the requests in the order used

by the backend performing the imsert.

The concurrency control mechanism described in [Hsia8lb] assures that
requests which are not permutable or compatible are executed, without over-
lap, in the order received by the controller. Permutable requests can,
however, be executed in any order so long as they do not overlap at the same
backend. So as to keep track of all the requests, each backend maintains a
queue of requests for each cluster, in the order in which the controller re-
ceived the requests. Thus no later request can execute before an earlier re-
quest that is not permutable has been executed. In addition no permutable
requests can execute concurrently, although the order of execution can be

modified. On the other hand compatible requests can execute together,

e & o

PAGE 57

4.2,2 Two Categories of Locks

Unfortunately, allowing the permutation of requests means that a new
problem may now occur, the problem of staryation. It may be possible to per-
mute one request indefinitely. Thus that request will never be allowed to
execute. In order to prevent starvation, we introduce two categories of
locks: “to-be-used" and "being-used". As soon as a request reaches a back-
end, it locks the clusters it needs in the "to-be-used" category. Before it
can execute, it must convert the locks to the "being-used" category. Only
requests which are locking a cluster in the "to-be-used" category are allowed
to be permuted. Thus starvation can be prevented. Details of how this
conversion of a lock from "to-be-used" to "being-used" and how this mechanism
allows the ~:rmutation of requests while preventing starvation are discussed

below. First however we must relate transactions to concurrency control.

4.2.3 The Notion of Transaction

A user may wish to treat a set of requests as a transaction. Such a set
of requests is known by the user to preserve the consjstency of the database
if executed alone on a database system running on a single computer. Users
may want execution of a transaction to begin before all the requests in the
transaction have been provided to MDBS. In this case, we call the transac-
tion incompletely~specified. Unfortunately, because all clusters required by
the incompletely-specified transaction cannot be determined before execution
of the tramsaction is to ‘begin, there is no algorithm which allows the use of
incompletely~-specified tramsactions without sometimes having to backup one of
two transactions which have been executing concurrently. Thus in MDBS, we
have chosen to restrict transactions to those that are pre-specified, i.e.,
all the requests in a transaction must be submitted to MDBS at the same time
and before execution of any of the requests in the transaction begins. Then
MDBS must convert all locks to the "being-used" category before execution of
the transaction can begin. Locks can then be released as requests in the

transaction finish execution,

In the previous section, when we discussed compatible and permutable re-

quests, we assumed the requests were not part of a transaction. We must now

PAGE 58

reexamine these concepts in the context of transactions. Since two compati-
ble requests have no affect on each other, we can still allow their concur-
rent execution even when one is part of a transaction, On the other hand,
the order of exzecution of two permutable requests does affect the result.
Thus the whole transaction should be permuted, rather than one of its re-
quests. Because of the complexity of permuting a whole transaction, we have

chosen to permute only requests that are not part of a tramnsaction.

4.2.4 Concurrency Control Using a Message-Oriented Approach

The concurrency control mechanism was described in [Hsia8lb] wusing a

procedure-oriented approach. Thus there was to be a lock table shared

by all users. In addition, tramsactions were deactivated when a needed clus-
ter was locked by other requests and were activated when the needed cluster

became available.

This basic mechanism must wnow be transformed to reflect a
message-oriented approach. In this approach, as described earlier, there is

a concurrency control process. This process receives messages from the di-

rectory management process f(a request to be executed) and from the record
processing process (a report that a request has completed execution). When
the concurrency control process determines that a request is ready for execu-
tion it forwards the request to record processing. The '"shared lock-table"
evident in the procedure-oriented approach now appears as a table intermnal to
the concurrency control process. This table, called the
cluster—to-traffic~unit table(CTUT), is described in Section (B) below. The
concept of "deactivating" a transaction is replaced by having concurrency
control hold the request in a queue until it can be forwarded to record pro-
ceseing for execution. The algorithms for concurrency control are described

in Section (D) below.
(A) The Process Structure in the Backends
Once a message-oriented approach has been selected, it is necessary to

break up the functions of each backend into processes. The most obvious

choice would be to have ome process per function, i.e., five processes cor-

[, S

PAGE 59

responding to descriptor search, cluster search, concurrency control, address
generation and record processing, respectively. {(The sixth functiom, cluster
access control is omitted because it is not included in our initial implemen-
tation.) However, since there is added overhead for each interprocess mes-
sage, it is desirable to reduce the number of processes. One easy way to do
this is to combine descriptor search and cluster search into a single direc-
tory management process. Address generation must take place after concurren-
cy control, since records may be added to a cluster while a request is wait-
ing to lock the cluster. Thus, address generation cannot be included in a
directory management process. However, it could be combired with either con-
currency control or record processing. For the purposes of discussing con-
currency control, it is easiest to assume that address generation is not part
of concurrency control. Thus the function of concurrency control is to sche-
dule the execution of requests based on the clusters that are required as de-~

termined by directory management.
(B) Cluster-To~Traffic~Unit Table (CTUT)

As was described earlier, information about the locks held on each clus~
ter is stored in the CTUT. This table contains a queue for each cluster.
Each cluster queue contains an entry for each of the requests requiring that
cluster. Each entry contains an identifier for the request (the traffic-unit
and the request-number), the MODE of access required (delete, insert,
retrieve or update), and the CATEGORY of lock held ("to-be-used" or
Ybeing-used”). A sample CTUT with four clusters is shown in Figure l4. This

table contains entries for five single requests and one transaction consist~

ing of two requests.

(C) Traffic-Unit-To~Cluster Table (TUCT)

In a procedure~oriented implementation there is a process associated

with each user and this procese keeps track of how many locks are still to be
acquired before a transaction can be executed. However, in a
message-oriented implementation, of course, there is no such process for a
user. Thus this information must be maintained in a different way. The con-
currency control process stores this inforwation in a traffic-unit-to-cluster

PAGE 60
Clusters || Traffic-Units
[.
++ + + TUl and TU2Z are compatible
TUL | TU2 TU3 | and are executing. The lock for TU3 !
cl 1 bl U | has been converted to "being-used",
BU | BUO b3 ! but since U and I are not

compatible, TU3 must wait.

TU3 and TU4 have been
permuted,

c2

TU5,R]l would be permutable
with TU4, except that it
is part of a tramsaction.

I [D
BU | BU

C3

TUS,R2 | TU6
1

c4 |
TBU | BU

+ ———t ——— -4 ——— %

([
I
i
l
¥
H
Il TU4 | TUS,RI
[
I
[
T
I

C = Cluster T0 = Traffic-Unit
R = Request within traffic-unit

MODE of Request CATEGORY of Request
D = Delete BU = Being-Used
I = Insert TBU = To-Be-Used
R = Retrieve
U = Update

Figure 14. A Sample of Cluster-To-Traffic~Unit Table (CTUT)

PAGE 6]

table (TUCT), which it can then use to determine the status of any
traffic-unit. This table is essentially an inverse of the CTUT. It is a
reference, by traffic-unit, of which clusters are required for each request
of the traffic-unit. 1In addition, this table keeps track of how many re-
quests of the transaction have not yet been sent to record processing for ex-
ecution. Figure 15 shows the TUCT corresponding to the CTUT shown in Fig-

ure lé4.

(D) The Processing of Concurrency Control Information

The concurrency control process receives messages from directory manage-
ment and from record processing. A message from directory management con-
sists of a nev request to be executed and a list of clusters required by that
request. A message from record processing means that execution of a request
has been completed. Concurrency control must send messages to record pro-

cessing notifying it to begin execution of a request.

In order to handle these messages, concurrency control must perform
three basic functions. When a new traffic-unit is received from directory
management, a8n initialization must be performed locking all the required
clusters in the "to-be-used" category. When concurrency control receives a
message from record processing that execution of a request has been complet-
ed, then concurrency control must remove that request from the TUCT (and
CTUT) and determine the clusters that were locked by that request. Finally,
vhenever a new request is received or an old request has completed execution,
concurrency control must try to convert as many locks in the clusters re-
quired by that request to the "being-used" category. When all locks required
by a request have been converted to "being~used", the process must notify re-

cord processing to begin execution of the request.

Traffic~ } Requests
Units I
T0l 1l €1 | executing <--—+
(one request) || BU | |
ot + compatible
TU2 [l €1 | |
(one request) !| BU | executing <-—-+
TU3 Il ¢l c2 | vaiting for Cl <——-+
(one request) || BU TBU | |
++ + = permutable
i T04 1] €2 C3 | |
(one request) || BU BU | executing <~—————-—-+
TU5 |} c3] ¢ch4 | waiting for C3
(two requests)!| BU | TBU |
TU6 || C4 | waiting for Cé4
(one request) || BU | '
T0 = Traffic-Unit
C = Cluster
BU = Being-Used
TBU = To-Be-Used

* Note that a transaction must acquire
all locks before it can proceed., It
can, however, release the locks as
each request finishes execution.

Figure 15. The Traffic-Unit-To~-Cluster Table (TUCT) Corresponding to the
CIUT in Figure 14

PAGE 63

5.0 TESTING MDBS

In order to test MDBS two types of sample information must be made
available. They are sample databases and sample requests. Therefore, a test
of MDBS consists of loading a sample database and then executing one or more
sample requests on the database,

5.1 The Need for the Generation of Test Databases and Lists of User

— —— ——— —————————s. R T ——— i ——————— S———

In the first report [Kerr82], it was argued that a program to generate
test databases would facilitate the testing process. A program, the Test
g;lg Generation Package, was developed for this purpose. It was also des-
cribed in the first report.

A second program, the Test Request Generation and Execution Package, is
being developed. This program is to assist in the generation of lists of

sample requests to be executed and to facilitate the execution of the re-
quests in a test session. In the following sections, we describe this Pack-
age.

5.2 The Generation of User Requests Lists

Several methods of generating lists of requests are possible., In addi-
tion, once the requests have been generated, several schemes for executing

the requests are also possible,

5.2.1 User-Generated vs. Program-Generated Requests

As with the test files, a user may directly generate each request to be
executed or & Pprogram may generate random requests based on some criteria
chosen by the user. 8ince we anticipute our initial tests will use only a
small number of requests and since we want to choose our requests to test
certain features of MDBS, we have chosen to implement a package which first

assists the user in the generation of short lists of requests and then facil-

PAGE 64

itates the execution of lists of requests intended for certain features of
MDBS. In other words, we are developing a package for user—generated test
requests. Program-generated lists of requests are needed for performance
evaluation experiments but are not needed for testing the featureas of MDBS.

Such a package will be developed at a later date.

5.2.2 A Simple Test Package for a Single User

The first package developed is intended for testing Version I of MDBS,
i.e., it assumes a single user wants to execute one request at a time. This
package first assists the user in the generation of lists of requests. Once
a list of requests has been generated it is saved in a file so that it can be
executed at a later time. Thus the user does not have to type in sample re-

quests repeatedly.

The test package works as follows. A user decides to have a test
session consisting of several test subgessjons. During each subsession the
user can do one of the following:

(1) Execute a list of requests that was previously stored in a file.

(2) Generate a list of requests to be stored in a file for later use.

(3) Retrieve a list of requests that were previously stored in a file and
then select requests from that list for execution. This selection
can be done in any order. The user will also be able to enter a new
request to be executed.

(4) Modify an existing list of requests that was previously stored in a
file.

The user can continue with as many subsessions as desired. The user is
also given a choice of two ways to examine the responses from MDBS. They may
be displayed immediately at the user terminal and/or they may be saved in a
file for later exsmination. The design of this package is given in
Appendix D.

PAGE 65

5.2.3 A Test Package for the Simulation of Multiple Concurrent Users

MDBS is, of course, designed to allow concurrent execution of requests
by multiple users. Thus all versions of MDBS, except MDBS-I, must be tested
vith multiple concurrent users. In order to perform these tests there must
be a way to simulate multiple users.

The simplest technique is to execute multiple copies of the package des-
cribed in the previous section. Thus, if we had n copies of the package, we
could simultaneously execute n different lists of requests - one for each
concurrent user. Although easy to implement, there are two problems with
this technique. First, setting up the n copies will be inconvenient, since
we will either need n people sitting at different terminals or someone will
have to run among a group of terminals. Second, replicating a test will be
difficult., MDBS merges the requests as they are received from different
users. The requests are then executed in this merged order, subject to al-
terations due to concurrency control restrictions. Even if in two tests the
users all submit the same requests in the same order, there is no guarantee
that MDBS will receive the combined requests in the same order. Thus the
merged lists will be different and the two tests will not be identical.
Although it will be possible to run the same sets of requests, it will be im-
possible to assure that MDBS will receive the requests in the same order.

Thus MDBS will not be asked to perform exactly the same sequence of requests.

An alternative to running multiple copies of a package which can only
simulate a single user is to run a new package that actually simulates multi-
ple users. Such a package may be a modification of the single-user package.
The main modification would be to associate each request with a particular
user., Then the requests could be executed in turn thus simulating a
multi-user system. We plan to use this approach for testing the later ver-
sions of MDBS.

5.2.4 A Test Package for the Generation of Random Requests

Like the Test File Generation Package, which generates test files with

specified distributions of data values, this package generates certain types
of requests for performance eveluation. Lists of requests vary in the mix-

ture of the different request types they contain, Thus & user should be able

[-

PAGE 66

to specify the percentage of RETRIEVE, INSERT, DELETE and UPDATE requests to
be generated. In addition, each non-insert request has a query part. Some
queries may be simple, say with one or two predicates. Others may be more
complex, say with 10-15 predicates. Thus the user should also be able to o
specify the complexity of the requests being generated.

MDBS is likely to be more effective handling some forms of requests than
others. Thus, it is desirable to perform experiments with different distri- :
butions of the request types. A package for the generation of random re-

quests is to be developed for performance evaluation studies.

———

PAGE 67

6.0 OUR SOFTWARE ENGINEERING EXPERIENCE

Well-known software engineering techniques have been applied to the de-
velopment of application programe and the writing of compilers and operating
systems. They have not, however, been widely applied to database system im-
plementations. Our goal is not limited to the production of a prototype
MDBS, but is aimed toward application of software engineering techniques to
the development of the system., In the application, we are trying to identify
the adequacy and applicability of the software engineering techniques used.
We also attempt to modify the existing software engineering methodologies and
propose new methodologies to tailor them for effective software engineering
of database systems. In [Kerr82], we described the initial techmiques that
we were going to use. In this chapter, we describe some of the techniques
that have been most effective. We also describe the new techniques that we

have added to our initial techniques.

We conclude this report by giving the current status of the implementa-

tion,

6.1 The Effectiveness of the Technjques Used

Different software engineering techniques have been used in the develop-
ment of MDBS. They include a modified chief-programmer team organizatiom,
uniform documentation standards, a formal system specification language, use
of structured walkthroughs, incremental development, top-down design strategy
combined with the use of data and service abstractions, structured coding and
a testing approach. Our finding is that most of the techniques may be used
in prototyping the database system, i.e., MDBS, In this section, we describe
the techniques that have been most effective,

6.1.1 The Use of Structured Walkthroughs

A structured wyslkthrough is a formal review of the software development
effort at a given stage in its development cycle. The work is reviewed by a

walkthrough committee, with the purpose of finding any errors that may be

PAGE 68 l

present. The purpose of a walkthrough is not to solve problems, only to
identify them; neither is a walkthrough a management tool to evaluate any

employee”s performance.

We have been using this technique at both the design stage and the cod-
ing stage. All detailed program specifications and source codes are reviewed
by walkthrough committees. The status of a task can be determined by review-
ing the walkthrough reports for that task. Pigure 16 shows a sample walk-
through report. A good reference describing the structured walkthrough tech-

nique is [Your79al.

The use of structured walkthroughe has helped us to identify most of the
design and program code problems. Furthermore, most of the suggestions made
by the reviewers in the walkthroughs have been very useful to the presenters.
A presenter, of course, investigates the comments and suggestions made about
his work, instead of simply modifying his work to incorporate the sugges-
tions.

6.1.2 The Use of a Formal Systems Specification Language (SSL)

Our original design methodology was a systems specification language
(SSL) modeled on the process design language (PDL) described in [Ling79].
The original SSL is described in [Kerr82]. The SSL which we now use is based
on our original SSL and it is intended to describe systems of any size. The
current SSL is characterized by a number of constructs for the expression of
the different 1levels of a system: system, subsystem, module and procedure.
A system is at the highest level of the hierarchy. MDBS, for example, is a

system,

At the second highest level of the hierarchy, we have the level of sub-
system. A subsye- _ is a separate component of a system. In other words,
each system may counsist of several subsystems. The MDBS controller, for ex-~
smple, is a subsystem, a8 is each MDBS backend. The system, consisting of
the controller and the backends, is the MDBS.

Below the level of subsystem, we have the level of module. A module is

PAGE 69

SR E B U NE M ARG LA NANENB UL ARIA BRIV BRI UAATAUATANAACTSASINAANERAEITRRS S
BB S RN RS U U U R U R AR U RN I N RE AR AU ACUSAAUAR AT UNAARAAARAR AR AN

dALATRASUGY 3IEAT2T
learzinator: %_H‘;Mﬁ’(ﬁ:.----
Project: MC3ES /e.an.ab %“ i

N RUUARIU U AR AT AVABRAXNANANARINIX T ANXX IO

ussaanazz*;vaaanutuansuun 3

Ca:r:ina:cr': Tracklistl

le CoAtira with grosucars M2t =3%1r223)1 18 raasy ans s2atls.

2. Is3u2 invitations, as3ign masconsisi.ivizs, Zistmiduta matarials.
2are Lpak, 4, ‘P2 et _QAZIO ...
Tine [0 _ sratiey 20 mupudlio

Lar. “as
Particigans 22lq lttand Mat2~ial Imjitials

. Aﬁs_%m L L agewen... VL v, 9

2. M«m Seaddteon Mo M ST
3. L@;Zéu;‘a‘.'__ /@/Lu.m.m_---- N M llde.

B S S R R R G AT SR AU S SN SR RS R UN A AIIAARNIAJATURARAX VY IINAASIAALS

sgarda:
le all zarticigsrcs 2;r22 %3 f2ll2¢ 2ne (327e!) g23% ¢c? rules.

e Nau praZ2cet Lalxkthraugn ¢ matrrizl.

2ls zraz2c% Ltam=9y=.%22" crack2t? o0¢ previsus 3c%izn list
- Jeo Lr2a%i3n 2% Moo 3ction 1ist (contrituticas by eszh pyricioant).

)(*e 3F3up 2Wci1Elon.
){ Se Jaliver 293y 9¢ this fer= 20 crajzzt Torsgamente,

B AR U U AR M ANE AN AR IR IR AR AU INAAARATURAANRARDIARATIARARB R R et tert

~2C3E% 3rJCuCt 2s-:3
Sdvigr (a3 fmcnmre L3lccmrnczo)
-— AMVLE2 /Y 3CRRILle 3NCIMNIT Talk APy

(Fa~2ac.22r7s $=2uld trrivial 2Z9ve,)
EVE P03 X T T PTETY BPL VR RTINS PO FRURTE REL TR L 2 TR BARARJABDAAFAZILAAAAIRLAITIN AN AND
RS- T 1B - RIE- R RIST 5 2EE1ET3 - FYRZRIL ¥ EiE - RT R FTE- ¥ 3 B 178:1,

sezi3isn: __

K

Figure 16. A Sample Walkthrough Report

ANMARARNENANIPRTRICILANAARSA AR NNIINNST

PAGE 70

intended for the implementation of a data or service abstraction. It con-
sists of the procedures and data structures implementing the abstraction. A
procedure is at the lowest level of the hierarchy. It corresponds to the
usual notion of a subroutine. Procedures are invoked to perform some work on
some input data and produce some output. However, they are not allowed to
retain data between invocations. A formal outer syntax and an informal jinner
syntax are used in a procedure. The outer—syntax allows only the following
three types of constructs: sequence, decision and iteratiom. Below is an
example of the if-then-else decision construct.
if expression
then statement sequence
else statement sequence
endif
The underlined words represent the formal outer syntax. The other words
represent the informal inner syntax; the only requirement for this inner
syntax is that it must be understood by all project members. Figure 17 shows

a typical SSL procedure specification.

The use of a formal system specification language has been very effec~
tive. More specifically, by using the SSL:
(1) Precise and unambiguous communication among the project members is
achieved.
(2) Complete and accurate documentations are produced.
(3) Dependence on individuals is reduced.

{4) Project management is easier.

One useful concept that we have not employed is multi-level data ab-
stractions (having higher level data abstractioms which use lower level data
sbstractions which in turn use lower level data abstractions, and so on). We
have used data abstractions only at the lower levels. The reason for this is
probably that we are not used to the concept of multi-level data abstrac-
tions. This concept, however, leads to better and well-structured design.

Thus, it should be employed.

PAGE 71

The 4~th level of the
nrocedure hierarchy

which requires 4 numbers
for each program statement

omments for programs
statements immediately
above

FOURTH LEVEL SPECIrICATION FOR oaraaas; LOAD .
'VERSION 2, Seeteamber 16+ 1981 |
| !
|

4,10,21,1 eroc LIST.TYFE-C_ATTR.NANMES /% TYPECLST (DBLL11L3) %/
(ineut: tyme-Coattir.nanes:
ateointer);

/% List all the attribute naaes over which twyee=C descrirtors 3/
/% are to be defirmed, Inmput 15 2 list for attribute names X/

/% over which tyepe-(C attributes are tc be defined: and 3 x/
/% pointer Lo the AT, ’ X/
4,10.28.,2 scalar indexy /% Index to list of attribute names. %/
attronane: .
b $) durlicater /% Indicator - TRUE or FALSE, : 94
ddxtpoznterr/t Pointer into OUIT returned from ATHY/
FIND funetion. £/
descr_typel ’t As By C» or NOTFOUND, x/
4,10,21.3 index = 1} /7% Null indicates end of list., %/
4,10.21.4 tyre-C_attr.nameslindex] = nul.; 3 1
. L. uter syntax elements are
4,10.,21,5 wbile (aore tyre-C descrirtors dq underlined. They are the
4,10.21.46 begig -
4,10.21.7 get attr_name fraom terminal; SSL constructs,
4,10.21.8 gertara ATHM3FIND(attr_nane,
dditeointer,
pointer to descr.tuyeeli
4,10.21.9 it 3 tupe=A or Luse-3 descrirtor 1s already defined
over this attribuyte name
/% descr_type not = NOTFOUND
4,10.21.10 thea . = ;
4,10.,21.11 display error nessage’ Inner syntax elements
4,10.22,12 else are not underlined
4,13.21.13 hedin
4,10,21,138x duplicate = ©ALSE
4,10421.13 gexfaza SEARCH TYFE =C.ATTR_NANES
ts:e C.atir_names,
attr.nane;, a a
. . Guslicate)s A program constant
4,10,21.1¢° it durlicate 1s FALSE
401002101/ f-b \
4,10,21.18 hesxn
4,10,21,19 tupe=-C.attr. nanesandexJ 'z attr_naae;
4,10.21.20 index := 1mfex + Li A proeram
4,10,21.21 tupe=C_atir_names{index] i= nullj variatle ¢
? 34,10.,28.22 ead.ili . o _ ‘
‘ 401002‘.0:3 Eﬁd-iﬁ;
4010021 24 eod.whiles

This number reans that this is the 25-th
orogram statement in this procedure. The
procedure number is 4.10,21 which meaas that it
was called at orogram statement 21 in the level-3

nrocedure numbered 4.10. That orocedure was in turn, called
at orogram statement .0 of the level-2 procedure numbered &.

D -
;ocecgre 4, in turn, was called by program statement 4 in
tie main nrocedyre.

Figure 17. A SSL Specification of a Frogram Procedure

4,10,21.25 ead.zcoci

RS —— ' —

PAGE 72

6.1.3 A Top-Down Design Strategy and the Use of Data and Service

Abstractions

A top-down design strategy is a natural choice for MDBS, The design and
analysis study in [Hsia8la] and [HsiaBlb) clearly describes the top level of
design., It also suggests the possibility of functional decomposition, 1i.e.,
the entire system can be broken into discrete functional units. For example,
the execution phases of a retrieval request can be broken down into directory
management and record processing, as depicted in Figure 2. Directory manage-~
ment, an example of a functional unit, includes the descriptor search, clus-

ter search, and address generation phases of request execution.

At a lower level, one concept, data and service abstractions, 1is used
which originated in the bottom-up design approach. Since MDBS is being de-
veloped as a prototype system and is aimed for research into performance eva-
luation, we anticipate that data structures and system services will be rou-
tinely modified in attempts to measure the effect of different data struc-
tures on system performance. The abstractions allow us to separate the basic |
system functions from the data structures and from the implementation of the
services, minimizing the effect on the system when data structures or imple-~

mentation services are modified.

We did not, unintentionally, follow the top-down design strategy in the
development of the MDBS controller. Instead, the functional components of

the controller such as Request Composer and Reply Monitor were first deter-

mined. Then, the categories of functions such as Request Preparation and
Post Processing were determined based on the functional components., A
top-down design of the controller would have first identified the categories

of functions such as Request Preparation, Insert Information Generation and

Post Processing. It would have then decomposed them into smaller components.

6.2 Trying New Software Engjneering Technjques

We have added new software engineering techniques to our initial techmi-

ques, In this section, we describe these new techniques.

PAGE 73

6.2.1 The Use of Jackson Charts

Our original designs were developed using only SSL, More recently, we
have begun wusing a techuique, Jackson chart [Jack75], to represent the pro-
gram structures, Three constructs are used in a chart:

(1) Sequence - Figure 18a shows a sample sequence. In this example, the
sequence A consists of B followed by C followed by D.
(2) Iteration - Figure 18b shows a sample iterationm. In this example,
the iteration A consists of multiple occurrences of B.
(3) Selection - Figure 18c shows a sample selection. In this example,
the selection A consists of one of B, C or D.
A sample program structure and its corresponding SSL are shown in Figures 19

and 20, respectively.

Jackson charts contain fewer details than the SSL specifications, and
provide a two-dimensional representation of program structure. These charts,

along with the 8L specification, are used to document the detailed design.

6.2.2 Standards tor Module Decomposition

As explained in the previous chapters, the entire MDBS aystem has been
designed as & set of discrete functional units. We propose to apply the same
idea of functional decomposition at the level of subsystem design. We need
some way to evaluate the modularity of our decomposition. This need became
apparent when we began designing the top-level scheme for MDBS subsystems.
It is necessary that we develop a unified view of the overall function of the
subsystems of the controller and the backends before proceeding to design the
abstractions and proceducres. We have added to our collection of software en-

gineering strategies two measures of modularity, or functional decomposition.

The first of these measures is strength of module cohesion [Your79b].

Cohesjon is defined as the relatedness of processing elements within a single

component of a system, i.e., 8 subsystem, a module or a procedure. The de-
gree of relatedness determines the level of cchesion. Several levels of
cohesion, ranked from least to most desirable, are recognized., A component

is said to be functionally cohesive, most desirable level of cohesionm, if

(a)

Sequence

(e)

Selection

(b)

Iteration

Figure 18. The Constructs Used in a Jackson Chart

PAGE 74

PAGE 75

Delete
Tequest
processing
e vne e ot = = v i 0

| Process data
| track by track
|
AT e e en et - o

Fetch one crackI | Delete(mark)
to TRACK_BUFFER records
+ +

Select records j*

in TRACK_BUFFER +-
one by one

|

e -
14 -*

Check if the record l
*_has been deleted

} !

4 - + <+
+ r hd

| 1

L
+—t

& -
+ h g

!

Store TRACK BUFFER
back to disk

.

&

+— 4+
+—
+———

o+

presy
L

+

+ + +
| Deleted ol | Not deleted lol
e - + +
s e o o o o o o + +
| Do nothing]| Check whetber the [*
e e record satisfies +-
the query
+ l ‘ +
TR — IS,

o

! {

o+
I Satisfied lol When not satisfied lo
.
-+

+—st

processing +-

]

<
+

| Mark the 1 | Do nothing 1
record 1in + +
TRACK_BUFFER

e
*

Figure 19. A Sample Program Structure

PAGE 76
/
10.1 proc DELETE_PROCESSING(jnput: QUERY,ADDRESSES);
/* This procedure is to be used for processing of DELETE requests. */
10.2 list QUERY: string;
10.3 Ser ADDRESSES: integer;
10.4 array TRACX_BUFFER: word;
10.5 scalar indexA,indexB: integer;
/*These are pointers for ADDRESSES and TRACK_BUFFER respectively */
10.6 scalar satisfied: logical;
/* Process data track by track . */ i
10.7 for each address ADDRESSES(indexA) in ADDRESSES do
/* Fetch one track into TRACK_BUFFER. */
| 10.8 perform FETCH_TO_TRACK_BUFFER(indexA,TRACK_BUFFER);
; /* Select records in TRACK_BUFFER ome by one. */
' 10.9 for each record TRACK_BUFFER(indexB) in TRACK_BUFFER dg ;
: 10.10 if the record is not marked for deletion %
10,11 then begin
/* Check whether the record satisfies the QUERY. */
10.12 perrorm CHGECK_QUERY(QUERY,TRACK_BUFFER, indexB,satisfied);
10.13 if satisfied="true’ S
then
/* Mark the retrieved record in TRACK_BUFFER(indexB).*/
10.14 perform DELETE(TRACK_BUFFER, indexB);
10.15 end if
10.16 end bdegin
10.17 end if
10.18 end for /* indexB */
/* Store TRACK_BUFFER back to disk, */

10.19 perform STORE_TRACK_BUFFER(indexA,TRACK_BUFFER);
10.20 end for /* indexa */
10.21 end proc

Figure 20, The SSL Corresponding to the Sample Program Structure in Figure 8

g e — e ¢

e e o — RS R

:.L . i i as. LU ST Y e

PAGE 77

"every element of processing is an integral part of, and is essential to, the
performance of a single function". An £d hoc measurement is that the des-
cription for a functionally cohesive component should consist of one impera-
tive sentence containing one transitive verb and one non-plural object. We
have applied this ad hoc measurement to our current design work. The de-
signer is required to write a functional description of each program compo-~
nent, say an abstraction, of the design. Each description begins with a sin~
gle imperative sentence which concisely describes the function of that compo-
nent. For example, the following sentence describes the function of a proce-
dure of the MDBS controller, the Aggregate Post Operation
Aggregate Post Ogeration performs the final aggregation

operation on the partial aggregate results returned
from the backends.

The second measure of modularity is the degree of interconnections
between components. Coupling is a measure of the strenmgth of intercomnection
between components. Several categories of coupling, ranked from lowest (best

case) to tightest (worse case), are recognized. Two components are said to

have no direct coupling, lowest coupling (best case), if each can function

vithout knowledge of the other. We now give an example to show how we em-
ployed these standards for module decomposition. The original design for the
controller, Figure 21, had a function called Insert/Update Information Gener-
ator. This function was intended to perform the following operations:
(1) to select a backend for record insertion when executing an insert re-
quest
(2) to generate new descriptor ids
(3) to generate new cluster ids,
In addition to performing the above operations by itself, Insert/Update In-
formation Generator was intended to perform the following operations together
with Request Composer:
(1) to initiate the actions required for the insertion of the records
that change cluster as a result of executing an update request
(2) to generate update requests with type-0 modifier for update requests
with type-III or type-1V modifier.
This function, Insert/Update Information Generator, is not functionally cohe-
sive and it 1is highly coupled with Request Composer. Thus, we changed the

original design of the controller.

PAGE 78 '

REPLY

MONITOR

AGGREGATE
POST
OPERATION

INSERT/

UPDATE
INFORMATION
GENERATOR

PARSER

REQUEST
COMPOSER

Figure 21,

The Original Design for MDBS Controller

PAGE 79

6.3 Current Status of the Implementatjon

The implementation of MDBS is underway. The detailed design of the con-
troller is finished and coding has begun. The parser has been coded and
tested. The first version of directory management is complete. The design

' for the second version has begun. The detailed design of record processing
is finished and coding has begun. The design of concurrency control has
begun. In addition to MDBS itself, we have completed several required auxi-
liary programs such as a database load utility. We expect to begin testing
MDBS-I soon. We expect to finish MDBS-II, III and IV by the end of this

year.

PAGE 80
REFRENCES

[Auer80] Auer, H., "RDBM - A Relational Database Machine", Technical Report
No. 8005, University of Braunschweig, June, 1980.

[H8ia70] Hsiao, D.K. and Harary, F.A., "A Formal System for Information Re- .
; trieval from Files," Communications of the ACM, Vol. 13, No. 2, February
1970; Corrigenda, Communications of the ACM, 13, 3, March 1970.

[Hsia8la] Hsiao, D.,K. and Menon, M.J., "Design and Analysis of a
Multi-Backend Database System for Performance Improvement, Functionality Ex-
pansion and Capacity Growth (Part I)", Technical Report, OSU-CISRC-TR-81-7,
The Ohio State University, Columbus, Ohio, July 1981.

[Hsia8lb] Hsiao, D.K. and Menon, M.J., "Design and Analysis of a
Multi-Backend Database System for performance Improvement, Functionality Ex-
pansion and Capacity Growth (Part II)", Technical Report, OSU-CISRC-TR-81-8,
The Ohio State University, Columbus, Ohio, August 1981.

{Jack?5] Jackson, M.A., Principles of Program Design, Academic Press, 1975.
[John79] Johnson, Stevem C., "Yacc: Yet Another Compiler-Compiler", UNIX

TIME-SHARING SYSTEM: UNIX PROGRAMMER”S MANUAL, Bell Telephone Laboratories,
Incorporated, Murray Hill, N.J., 1979.

[Kerr82] Kerr, D.S., et al., "The Implementation of a Multi-Backend Database
Sysyem (MDBS): Part I - Software Engineering Strategies and Efforts Towards
& Prototype MDBS", Technical Report, OSU-CISRC-TR-82-1, The Ohio State Un-

iversity, Columbus, Ohio, January 1982.

[Laue79] Lauer, H. and Needham, R., "On the Duality of Operating System
Structures," in Proc, Second Internstijonal Symposjum on Operating Systems,
IRIA, October 1978, reprinted in Operating Systems Review, Vol. 13, No. 2,
April 1979, pp. 3-19.

[Lesk79] Lesk, M.E. and E. Schmidt, "lex - A Lexical Anslyzer Generator",

R A ot

PAGE 81

UNIX TIME-SHARING SYSTEM: UNIX PROGRAMMER’S MANUAL, Bell Telephone Laborato-
ries, Incorporated, Murray Hill, N.J., 1979.

[Ling79) Linger, R.C., Mills, H.D., and Witt, B.I., Structured Programming =
Theory and Practice, Addison-Wesley, 1979.

[Ston8l) Stonebraker, M., "Operating System Support for Database Management,"
Communicstons of the ACM, Vol. 24, No. 7, July 1981, pp. 412-418.

{Your79a] Yourdon, E., Structured Walkti:roughs (2und Edition), Prentice~Hall,
1979,

{Your79b] Yourdom, E. and Constantine, L.L., Structured Design:

Fundapentals of & Discipline of Computer Program and Systems Desjigm,
Prentice-Hall, 1979.

s L e

PAGE 82

APPENDIX A
HOW TO READ AND FOLLOW THE PROGRAM SPECIFICATIONS

In Appendices B, C and D, a large number of MDBS programs are described

and specified. These programs represent those parts of MDBS that have been

designed since the first report in this series was written.

A.] Parts within gn Appendix

Each appendix begins with an introduction which outlines the major com-
ponents of the design. For example, the design of the test request genera-
tion and execution package, presented in Appendix D, consists of two major
components: one to generate lists of requests to be executed and then to ex-
ecute those requests, the other to handle the output resulting from the exe-
cution of the requests. Accordinngly, each major component is described and
specified in a separate part of the appendix. Thus Appendix D has Part I and
Part 1I,

A.2 The Formst of a Part

In each part, we provide the following documentation elements:
(1) Title of the part,

(2) Name of the design,

(3) Name of the designer,

(4) Date the design was first submitted,

(5) Dates of design modifications,

(6) Statements of the design purpose, and of the input and output re-

quirements,

PAGE 83
(7) Formal specifications of the input and output, if necessary,
(8) Procedure names used in the design,
(9) Jackson chart of the design,
(10) Dats structures used in the design,

(11) Program specification of the design.

A.3 Documentation Techniques for a Part

In the previous section, we listed the various documentation elements.
They are used to describe a design. Documentation elements 1 through 5 are
written in English phrases. Document element 6 is written in prose. On the
other hand, document elements 7 through 11 can be expressed more effectively
using other means. Specifically, we use Backus-Naur form (BNF) for writing

the specifications in document element 7.

The procedure names of document element 8 are shown in a program hierar-
chy. The use of the hierarchy makes clear the calling sequences of the pro-
cedures named. A Jackson chart as described in Section 6.2,1 and depicted in
Figure 19 appears as element 9. The data structures of documentation element
10 are specified in either SSL or in the C programming language. In documen-
tation elemen’. 11, the procedures, themselves, are specified in SSL.

Except for the programming team that writes the procedures, other teams
will wusually not be interested in the internal logic of the procedures,
Consequently, they need only know the higher-level specifications of the pro-
cedures. 8SL as described in Section 6.1.2 and depicted in Figure 17 is an
ideal specification langusge for revealing the design of the procedures from
a top-to-bottom—-and-layer-to-layer way. It also works well with the hier-

archical organization of procedures.

PAGE 84

APPENDIX B

THE SSL SPECIFICATION FOR MDBS CONTROLLER

The system specification for the controller is given in this appendix.
The specification consists of three parts, one for each process (task) in the

controller,
In Part I, the Request Preparation procees is specified. Imsert Infor-

mation Generation process and Post Processing process are specified in Parts

II and III, respectively.

B.1 Part I - The Request Preparation Process

/* (1) Part I : The Request Preparation Process */
/* (2) Design : REQUEST-PREPARATION */
/* (3) Designers : A, Orooji, Z.Z. Shi, P.R, Strawser */
/* (4) Date : Feb. 4, 1982 */
/* (5) Modified : Feb. 19, 1982 */
/* Apr., 12, 1982 */
/* Apr. 26, 1982 */
I* May 13, 1982 */
/* May 19, 1982 */
/* (6) P rpose */
/* This is the Request Preparation process. It consists of */
/* the functions which must be performed before a request or a */

/* transaction can be broadcasted to the backends.: */

PAGE 85

(8) Procedure Hierarcby for REQUEST~PREPARATION

REQUEST~PREPARATION

&
+

" "
- hd

+

T

PARSER REQUEST RP RP RP RP SEND BROADCAST
COMPOSER RECEIVES RECEIVES RECEIVES RECEIVES POST ALL
MESSAGE SENDER TRAFFIC BE PROCESSING DIRECTORY
UNIT MESSAGE MANAGEMENT

Ny ST T

o e 0 0 e e +

i , m——
PAGE 86
(9) Program Structure of REQUEST-PREPARATION (Jackson Chart)
+ +
l REggUEST I
PREPARATION
+ +
| I
+ + + +
| |
+ + + +
| INITIALIZATION | process all l
+ + messages
- +
|
- +
I process a |*l
message +-
+ +
] , , |
l bmmmmm eyt I
| I
+ + + + + o+ +
I scheduling R2 RP ‘ select based on ‘
check RECEIVES RECEIVES message sender
P me e + MESSAGE SENDER +
+ + = +
|
+ + TAE—
I |
e ——— + + +
host Io, l backend |ol
message +- message +-
P S S Y + +
| ! | |
$———————e + T I — + + + + +
|]) |
+ + + 4 + + + + + +
| PARSER | I .1l1Correct RP REQUEST | BROADCAST
RECEIVES o ————— + check RECEIVES COMPOSER ALL
TRAFFIC P BE Pt + | DIRECTORY
UNIT ‘ MESSAGE MANAGEMENT
e ———————— e + tom— e ———— + +
—— + +
I |
+ O —
all lo not lo
requests +- all -
correct requests
— + correct
| | m———————
P —————— + +— + |
| I i
+ + o+ + 4 + e m s
send | REQUEST | BROADCAST SEND
message(s) to COMPOSER ALL POST
POST pm———————— + DIRECTORY PROCESSINC
PROCESSING MANAGEMENT P o m s
+ + o ———— +
e l &
SEND | *
POST +-
PROCESSING

AD-Allg 161 OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC=-ETC F/6 9/2
THE IMPLEMENTATION OF A MULTI-BACKEND DATABASE SYSTEM (MOBS). P==ETC(U)

. JUL 82 X HE+ M HIGASHIDA» D K HSIAO» D S KERR N0O0014=75-C~0573
UNCLASSIFIED NPS-52-52-008 NL

22

1*

(10) Dats Structures

The data structure definitions are included in the program */
*

/* specifications.

1.

2.
3.
4.

5.
6.
7.

(11) Program Specifications

task REQUEST-PREPARATION

/* TrafficUnit : */
A is either a request or a transaction */
/* traffic-id : */
[* an integer that identifies a traffic umit */
/* TrafficUnitPtr : */
1* a pointer to (traffic-id,TrafficUnit) */
/* AllCorrect : */
/* indicates whether or not all the requests in the traffic */
/* unit are syntactically correct */
/* request-id : */
1% consists of (traffic-id,request-no) which uniquely */
/% identifies each request being processed by MDBS */
/* ParsedRequestsPtr : */
1* is one of the following two */
1* (1) a pointer to ((request-id,routing-indicator, */
/* no-pred, parsed-request)[,...}) if all the requests*/
[* in the traffic unit are syntactically correct. */
/% (2) a pointer to ((request-id,request, */
/% error-message)[,...]) if one (or more) of the */
/* requests in the traffic unit is not syntactically */
/% correct. */
/* PormattedRequestsPtr : */
/* a pointer to ((request-id,routing-indicator,no-pred, */
I* sched-no,formatted-request){,...]) */
/* AggregateOperatorsMessagePtr : */
/% a pointer to ((request-id,(attribute, */
/* aggregate-operator)[,...1)l,...]) *®/
/* RequestCountMessagePtr : */
[* a pointer to (traffic-id,request-count) */
/* request-count : */
1* number of requests in a traffic nuit */
/* MessageType : */
/* indicates the type of a message */
/* MessagePtr : */
A a pointer to a message */

do initialization work;
while “true” do /* do forever */
if according to the task scheduling this task should
release the processor

release the processor and wait;

end if
/* get the next message for REQUEST-PREPARATION */

8. perform RP-RECEIVESMESSAGE;
/* get the sender name of the next message for REQUEST- */
/* PREPARATION */
9. perform RP-RECEIVESSENDER(sender);
10. case sender value

11. “host machine”: .
/* get the traffic unit */
12, erform RP~RECEIVESTRAFFIC-UNIT(TrafficUnitPtr);
5* parse all the requests in the traffic umit */
13, perform PARSER(TrafficUnitPtr,AllCorrect,ParsedRequestsPtr,
AggregateOperatorsMessagePtr,RequestCountMessagePtr);
14, if AllCorrect
15. then
/* all the requests in the traffic unit are */
/* syntactically correct */
/* send number of requests in the traffic %/
/* unit to POST-PROCESSING : */
16. MessageType := “number-of-requests-in-s-
traffic-unit message”;
17. perform SEND-POST-PROCESSING(MessageType,
RequestCountMessagePtr);
18, if there are aggregate operators
19. then
| /* send the aggregate operators in the */
‘ /* requests to POST-PROCESSING */
20. MessageType := “aggregate-operators message’;
21. perform SEND-POST-PROCESSING(MessageType,
AggregateOperatorsMessagePtr);
22, end if '
/* transform the requests into the form required %/
/* for processing at the backends */
{ 23, MessageType := “PARSER message’;
24, perform REQUEST-COMPOSER(MessageType,

ParsedRequestsPtr,FormattedRequestsPtr);
/* send the requests to all the backends */

25, perform BROADCAST-ALL~DIRECTORY-MANAGEMENT(
‘ FormattedRequestsPtr);
26, else
/* one (or more) of the requests in the traffic */
/* unit has errors */
/* send the requests along with error messages */
/* to POST-PROCESSING */
4 27, MessageType := “request-with-error message’;
; 28, perform SEND-POST-PROCESSING(MessageType, .
ParsedRequestsPtr);
29. end if
30. “a backend’:
' /* There is a message from a backend for REQUEST- */
4 /* PREPARATION when */
3 /* - a retrieve request caused by an update */
4 /* request is completed */

/* - a record has changed cluster when executing */

1.

32.

33.

34.

35.
36.
37.
3s8.

Vi

PAGE 89

an update request. */

/* get the message sent by the backend */

paxfors

RP-RECEIVE$BE~-MESSAGE(MessagePtr);

Generate a request. (This request is either an */
/* insert or an update) */
MessageType := “backend message’;
perfors REQUEST-COMPOSER(MessageType,

MessagePtr,FormattedRequestsPtr);

/* send the request to all the backends */
perform BROADCAST-ALL-DIRECTORY-MANAGEMENT(

PormattedRequestsPtr);

“otherwise”:
system error;
end case

end while

13.1 proc PARSER(jmput: TrafficUmitPtr,

output: AllCorrect,ParsedRequestsPtr,
AggregateOperatorsMessagePtr ,RequestCountMessagePtr);

/* This routine parses all the requests in a traffic unit. (A */

;* traffic unit is either a request or a transaction.) *;

* *
/* TrafficUnitPtr : */
A a pointer to (traffic-id,TrafficUnit) */
/* AllCorrect : */
I* indicates whether or not all the requests in the traffic¥®/
/* unit are syntactically correct */
/* ParsedRequestsPtr : */
/* is one of the following two */
/* (1) a pointer to ((request-id,routing-indicator, */
[* no~-pred ,parsed-request)[,...]) if all the */
/* requests in the traffic unit are syntactically %/
/% correct. */
/% (2) a pointer to ((request-id,request, */
/* error-message)[,...)) if one (or more) of the */
/* requests in the traffic unit is not syntactically*
/% correct. ®/
/* AggregateOperatorsMessagePtr : */
I* a pointer to ((request-id,(attribute, */
/* aggregate—operator){,...])l,...]) */
/* RequestCountMessagePtr : */
/* a pointer to (traffic-id,request-count) *®/
/* request-count : */
/* number of requests in a traffic nuit ®/

13.2 end proc

24.1 proc REQUEST-COMPOSER(jnput: MessageType,MessagePtr,

output: FormattedRequestsPtr);

/* This routine transforms the requests into the form required*/

- reret e R AR A WIS e 7T e

o /* request
. /*

{* for processing at the backends.

/*
/* MessageType :
/* indicates the type of a message

/* MessagePtr :
[* a pointer to a message. (It is either ParsedRequestsPtr
/* or a pointer to a message sent by a backend.)
/* ParsedRequestsPtr :
1% a pointer to ((request-id,routing-indicator,no-pred,
1* parsed-request)[,...])
/* FormattedRequestsPtr :
I* a pointer to ((request-id,routing-indicator,
I* no-pred,sched-no,formatted-request)[,...])
24.2 end proc

module BRP-RECEIVE
programs MESSAGE, SENDER, TRAFFIC-UNIT, BE-MESSAGE

datasets MessageBuffer
/* used to store messages for REQUEST-PREPARATION

8.1 proc MESSAGE(input: nothing, output: nothing);
/* This routine gets the next message for REQUEST-PREPARATION
/* and stores it in MessageBuffer.

8.2 end proc

9.1 proc SENDER(in input: nothing, output: sender);
/* This routine returns the sender name of the next message

/* for REQUEST-PREPARATION

/*

/* sender :

/* the sender name of the next message for REQUEST-
/%* PREPARATION

9.2 end pxoc
12.1 proc TRAFFIC-UNIT(input: nothing, gutput: TrafficUnitPtr);

PAGE 90

*/

*/
*/

*/
*/
*/
*/
*/
*/

/* This routine returns & pointer to the next traffic unit for*/

/* REQUEST-PREPARATION
/ *

/* TrafficUnitPtr :
/* a pointer to (traffic-id,TrafficUnit)

12.2 end proc
3.1 g;gfin!-HBSSAGE(ipput: nothing, outpuyt: MessagePtr);

This routine returnes a pointer to the next message for
/* REQUEST-PREPARATION sent by a backend. There is a message
/* from a backend for REQUEST~PREPARATION when
A - a retrieve request caused by an update request is
/* completed

*/
*/
*/
*/

/* ~ & record has changed cluster when executing an update */

/* MessagePtr :

PAGE 91
v
/* a pointer to a message */
31.2 end proc
snd module
17.1 proc SERD-POST~PROCESSING(input: MessageType,MessagePtr,
output: nothing);
;* This routine sends a message to POST-PROCESSING *;
* *
/* MessageType : */
I* indicates the type of a message */
/* MessagePtr : */
/* a pointer to a message */

17.2 end proc

25.1 proc BROADCAST-ALL-DIRECTORY-MANAGEMENT(jnput: FormattedRequestsPtr,
oytput: nothing);
/* This routine broadcasts a set of formatted requests to all */

x /* the backends . %
! /* FormattedRequestsPtr : */
[* a pointer to ((request-id,routing-indicator,no-pred, */
/* sched-no,formatted-request)[,...]) */
25.2 end proc
39. end task
B.2 Part II - The Insert Information Goueration Process
/* (1) Part II : The Insert Information Generation Process */
/* (2) Design : INSERT-INFORMATION-GENERATION */
/* (3) Designers : A. Orooji, 2.Z. Shi, P.R, Strawser */
/* (4) Date : Feb. 4, 1982 */
/* (5) Modified : Feb. 19, 1982 */
/* Apr. 12, 1982 */
/* Apr. 26, 1982 */
/* May 25, 1982 */
1* May 28, 1982 */
/* Jun. 2, 1982 */
; /* (6) Purpose : */
4 . /* This is the Insert Information Gemeration Process. It */
4 /* consists of the functions which must be performed during the */
/* processing of an insert request to furnish additional */
/* information required by the backends. */
N ey m:‘ -

PAGE 92

(8) Procedure Hierarchy for INSERT~INFORMATION-GENERATION

INSEIT-INFORTATION-WION .

& " Y " & < <

* b

m:scur'mn ucxmm 116 116 116 11G BROADCAST BROADCAST
CTOR RECEIVES RECEIVES RECEIVES RECEIVES ALL ALL
cxmuron MESSAGE nou'rmc CLUSTER DESCRIPTOR ADDRESS DESCRIPTOR
NDICATOR ID GENERATION SEARCH

) CLUSTER CINBT CINBT RE us
D SELECT CLUS CLUS
GENERATOR ELEMENT CHECK
ADD SAVE

PAGE 93
(9) Program Structure of INSERT-IKFORMATION-GENERATION (Jackson Chart)
| INSERT A
INFORMATION
| GENERATION |
1 |
: ' R .
| INITIALIZATION | | process all l
+ . + | massages i
L .
i process a I*I
| message +-|
. 11 L J
R e |)
i scheduling i | 116 | | 116 1 i select based on i :
check RECEIVES RECELIVES routing-indicator ,
‘ + | MESSAGE ROUTING + + 4
4—————+ | INDICATOR |]
* + b———t —
| messsge for lo| | message for lo|
I BACKERD O 42 DESCRIPTOR +-
! SELECTOR 1D
¢ - + | GEwmRATOR |
A | | l ‘ . S W
o R e .. .
| 116 | | sackmwD | | last | 1 116 1 | DESCRIPTOR | | descriptor |
RECEIVES ' SELECTOR I cluster~id l I RECEIVES I I ID | l exist P |
CLUSTER R ——2 check DESCRIPTOR GENERATOR check
ID) + + + + o + + +
P e e asen
| | | |
+— + +—s + + ot
I . A ' Y & l o a ' e
last loi | not lo| descriptor lof i descriptor Ioi
cluster-id + last - does not +- exists +-
‘ + | cluster-id | | exist I+ +
b | o) .|) | X
BROADCAST do I BROADCAST do |
ALL nothing ALL nothing
ADDRESS rrncaneany DESCRIPTOR Pmmem—aned
| CERERATION | | seaxcH |
b
4 o 2 REY
- —— ——— A Bk s _,

- Sadaas o
}!? e e e e e —
|
i i
PAGE 94
Program Structure of BACKEND-SELECTOR (Jackson Chart)
Prsementnen m e o
| 3G
SELECTOR
<+
J I .
A l e l o
| f£irst cluster id | | last cluster id |
for this request for this request
! check check
R * j ! .
, . | | .) o | .
f not first Ioi I first loi I last . lo] | not last lol
. cluster id +- cluster id +- cluster id i 1 cluster id +|
+] + + + + T + + +
T-+ +_--T .l..—_.-+ +..._.T
| aet 11 RE RE 1 1 set ‘ l nev cluster 1| | set i
pointer I CI.SS CLSS I last check last ‘
e ———— L CHECK ELEMENT += + + + + +
LSAVE 1 ADD |
P va— I A e l o
i new Ioi lr not new loi
cluster +- cluster +~
| l + + l
4-----------«l + + i '
CLUSTER CINBT | CINBT l
1D ENTRY SELECT
GINERATOR ADD e — 4

PAGE 95 1
(10) Dats Structures
§ . /* The data structure definitions are included in the program */
% /* specifications. */
W (11) Program Specifications
X
?{ 1. task INSERT-INFORMATION-GENERATION
B [* request-id : */
/* consists of (traffic-id,request-no) which uniquely */
/% identifies each request being processed by MDBS */
/* routing-indicator : */
[* indicates where results/messages from backends should go to*/
/%* last : */
/% a flag (“true” or “false”) used when processing an insert */
/* request. This value is returned by BACKEND-SELECTOR and it */
/* indicates whether or not all the backends have returned a */
/* cluster id (or a null value). */
/* exist : */
I* a flag (“true” or “false”) used when processing a request */
/* for a new descriptor id. This value indicates whether or */
/* not the descriptor already exists, */
/* NewTrack : */ E
A a flag (“true” or “false”) used when inserting a record. */ E
/* This value indicates whether or not this is the first */ 3'
/* record being inserted in a track. */ |
i 2. do initialization work;
3. vhile “true” do /* do forever */
4, if according to the task scheduling this task should
release the processor #
4 5.
6. release the processor and wait;
7. end if
/* get the next message for INSERT-INFORMATION~GENRRATION */
8. perform IIG-RECEIVESMESSAGE;
/* get the routing-indicator in the next message */
; /* for INSERT-INFORMATION-~GENERATION */
; 9. pexform IIG-RECEIVESROUTING~INDICATOR(routing-indicator);
E 10. case routing-indicator yalue
11. “ BACKEND-SELECTOR” ¢
1 /* an insert request is being executed */
' /* receive the request-id and the cluster id (or a */
; /* null value) returned by a backend */
- 12, pexform IIG-RECEIVE$SCLUSTER-ID(request-id,cluster-id);
v /* Determine a backend for record insertion if all */
' /* the backends have returned a cluster id (or a */
> /* aull value). Otherwvise, save the cluster id (or */
{ o /* null value) returned by the backend. */
b i /* (BACKEND-SELECTOR will call CLUSTER-ID-GENERATOR*/
: : {* when there is a new cluster.) */
13. perform BACKEND-SELECTOR(request-id, cluster-id,

PACE 96
last, backend-no, NewTIrack);
14, if last
15. then
/* All the backends have returned a cluster */
/* id (or a null value). */
/* Send the backend number selected for */
/% record insertion to all the backends */
16. perform BROADCAST-ALL-ADDRESS-GENERATION(request-id,
backend-no, cluster~id, NewTrack);
17. end if
18. “DESCRIPTOR-ID~GENERATOR :

/* request for new type-C subdescriptor */
/* receive the request-id and the descriptor */

19. perform IIG~-RECEIVESDESCRIPTOR(request-id,descriptor);
/* The request for new type-C subdescriptor might */
/* bave already been received from another backend.*/
/* In that case, the descriptor id has already been */

/* generated and broadcasted. */
/* Generate a descriptor id if it is not already */
/* generated */
20, perform DESCRIPTOR-ID-GENERATOR(descriptor,
exist, descriptor-id);
21. if exist = “false”
22. then
/* broadcast the descriptor id to all the backends */
23. perform BROADCAST-ALL-DESCRIPTOR-SEARCH(request-~id,
descriptor, descriptor-id);
24, end if
25. ‘otherwise”:
26. system error;
27. end case
28. end while
13.1 proc RACKEND-SELECTOR(input: request-id, input/output: cluster-id,

output: last,backend-no,NewTrack);
/* This routine is called whenever a backend returns a cluster */
/* id (or a null value). It determines a backend for record ®/
/* insertion when all the backends have returned a cluster id */
/* (or s null value). Otherwise, it saves the cluster id (or */

/* null value) returned by a backend. */
/* (This routine will call CLUSTER~ID~GENERATOR when there is */)
/* a new cluster.) */
/* */
/* request-id : */
Ad consists of (traffic-id,request-no) which uniquely */
/* identifies each request being processed by MDBS */
/* cluster-id : */
/* uniquely identifies each cluster */
/* MoBackends : */

A total number of backends in MDBS. (This is a variable */

13.2

13.3
13.4

13.8
13.9

13.10

13.11

13.12
13.13

-
*

/* defined in SYSGEN.) */
/* last : */
/* a flag (“true” or “false”). This value indicates whether */
/* or not all the backends have returned a cluster id (or a */

/* null value). , */
/* backend-no : */
1% the number of the backend minicomputer selected to insert*/
/% a nev record into the database store */
/* NewTrack : */
/* a flag (“true” or “false’). This value indicates whether */

1% or not this is the first record being inserted in a track¥*/

* gtruct request-cluster-id {

* rid /* (traffic-id,request-no) */

* cids-received-count /* an integer i iting number
* of cluster ids received for st tid */
* cid /* cluster id received for requer id */

* /* each cluster id received for aest is %/
* /* either null or has the same v s the */
* /* other non-null cluster ids rec «d for ¥/
* /* the request */
* }

%
~

list all-req-clus-id; /* every element of this list comsists
of the three parts in request-cluster-id */

if request-id = rid of one of the elements in all-req-clus-id list
then
/* this is not the first cluster-id received for request */
/* request-id */
ptr := pointer to the element of all-req-~clus-id
with rid = request-id;

/* save the cluster id received from the backend if needed */
perform REQ-CLUS-CHECK-SAVE(cluster-id, all-req-clus-id, ptr);

else
/* this is the first cluster-id received for request */
/* request-id */ 1
/* add an element to all-req-clus-id list */

pexform REQ-CLUS-ELEMENT-ADD(request-id,
cluster-id, all-req-clus-id, ptr);

snd if
/* check to see whether or not all the backends have */
/* returned a cluster id (or a null value) */

if cids-received-count < NoBackends

/* not all the backends have returned a cluster */
/* id (or a null value) */
last := “false”;

,* all the backends have returned a cluster id (or */
/* a null value) */

13.14
13.15
13.16

13.17

13.18
13.19

13.20
13.21
13.22

PAGE 98

last := “true’;
if cid(ptr) = null
then
/* there is a new cluster */
perform CLUSTER-ID-GENERATOR(cluster-id);
/* add an entry to cluster-id-to-next-backend table */
perform CINBT-ENTRY-ADD(cluster-id);
end if
/* gelect a backend for record insertiom */
perform CINBT-SELECT(cluster-id, backend-no, NewTrack);
delete element(ptr) in all-req-clus-id list;

end if

13.23 end proc

13.8.1 proc REQ-CLUS-ELEMENT-ADD(input: request~id,cluster-id,

input /output: all-req~clus-id, output: ptr);

/* This routine adds an element to all-req~clus-id list */

13.8.2 list all-req-clus-id;
13.8.3 add an element to all~-req-clus-id list;
13.8.4 ptr := pointer to the element just added;
13.8.5 rid(ptr) := request-id;
13.8.6 cid(ptr) := cluster-id;
13.8.7 cids~received-count (ptr) := 1;
13.8.8 end proc
13.6.1 proc REQ~CLUS-CHECK-SAVE(input: cluster-id,ptr,
input/output: all-req-clus-id, ouput: nothing);
/* This routine saves the cluster id received from a */
/* backend if needed */
13.6.2 list all-req-clus-id;
13.6.3 cids-received-count (ptr) := cids-received-count(ptr) + 1;
13.6.4 if cluster-id ~= null
13.6.5 then
/* cluster id received from the backend is not null */
13.6.6 if cid(ptr) = null
13.6.7 then
/* all the previous cluster ids received from */
/* backends are null */
/* cluster-id ~= null, cid(ptr) = null */
13.6.8 cid(ptr) := cluster-id;
13.6.9 else
/* cluster-id ~= null, cid(ptr) ~= null */
13.6.10 if cluster-id ~= cid(ptr)
13.6.11 then
/* cluster-id ~= null, cid(ptr) ~= null, */
/* cluster-id ~= cid(ptr) *
13.6.12 “system error”;
13.6.13 end if
13.6.14 end if
13.6.15 end if
13.6.16 end proc

PAGR 99

13.18.1 proc CINBT-ENTRY-ADD(input: cluster-id, output: nothing);
/* This routine adds an entry to cluster-id-to-next-backend */
/* table */
13,18.2 add an entry to cluster-id—-to-next-backend table;
/* cluster id for this entry is cluster-id */
/* backend number for this entry is a random */
/* number bn (1 =< bn =< NoBackends) */
13.18.3 end proc

13.20.1 proc CINBT-SELECT(input: cluster-id, output: backend-no,NewTrack);
/* This routine selects a backend for record imsertion */

13.20.2 backend-no := backend selected (using CINBT) for record insertiom;

13.20.3 set NewTrack (using CINBT);

13,20.4 update CINBT if needed;

13.20.5 end proc

13.17.1 proc CLUSTER-ID-GENERATOR(input: nothing, output: cluster-id);
/* This routine generates a new clyster id, */

/* */
/* cluster—id : */
/* uniquely identifies each cluster */

13.17.2 end proc

i 20.1 proc DESCRIPTOR-ID-GENERATOR(jinput: descriptor,
output: exist,descriptor-id);
/* This routine generates a new descriptor id for a descriptor */

] /* if it is not already generated. */
/* */
/* exist : */
1* a flag (“true” or “false”). This value indicates whether */
/* or not the descriptor already exists. */
/* descriptor-id : */
/* uniquely identifies each descriptor */

/* This first implementation of DESCRIPTOR~ID-GENERATOR keeps */
/* the descriptor ids generated from system start up to system*/
r /* shut down (or until database reorganization). We need to ¥/
% ' /* keep the descriptor ids generated because multiple backends*/

? . /* may request a descriptor id for the same descriptor. */
| : /%

]

i * gtruct descriptor-descriptor-id {

:) * desc /* descriptor */

| i * desc-id /* corresponding descriptor id */

| >)

: */

20,2 list desc~desc-id-list; /* every element of this list

PACE 100

has the two elements in descriptor~descriptor-id */

20.3 if descriptor = desc of one of the .ixments in desc-desc~id-list
20.4 then
/* the descriptor id is already generated */
20.5 exist := “true”;
20.6 else
/* the descricor id is not generated yet */
20.7 exist := “false”;
20.8 descriptor-id := generate a descriptor id;
20.9 add (descriptor,descriptor-id) to desc-desc-id-list;

20.10 end if
20.11 end proc

module IIG-RECEIVE
programs MESSAGE, ROUTING~INDICATOR, CLUSTER-ID, DESCRIPTOR
datasets MessageBuffer
/* used to save messages for INSERT-INFORMATION-GENERATION */

8.1 proc MESSAGE(input: nothing, output: nothing);
/* This routine gets the next message for INSERT-INFORMATION- */
/* GENERATION and stores it in MessageBuffer. */
8.2 end proc

9.1 proc ROUTING-INDICATOR(input: nothing,
output: routing-indicator);

/* This routine returns the routing-indicator in the next */
/* message for INSERT-INFORMATION-GENERATION. */
[* . ®f
/* routing-indicator : */
/* indicates where results/messages from backends should go to*/

9.2 end proc

12.1 proc CLUSTER-ID(input: nothing, output: request~id,cluster-id);
/* This routine returns the request-id and the cluster id (or a */

/* null value) returned by a backend. */
A */
/* request-id : */
[* consists of (traffic-id,request-no) which uniquely */
/* identifies each request being processed by MDBS */
/* cluster-id : */
/* uniquely identifies each cluster */

12.2 end proc

19.1 proc DESCRIPTOR(input: nothing, output: request~id,descriptor);
/* This routine returns the descriptor sent by a backend. */
/% */
/* request-id : *f
/* consists of (traffic-id,request-no) which uniquely */
/% identifies each request being processed by MDBS «/

19.2 end proc

snd module

T T T T —— : e e

:::Hh---d-hﬂh-hi - — o o .

PAGE 101

16.1 proc BROADCAST-ALL-ADDRESS-GENERATION(jnput: request-id,

backend-no,cluster-id, output: nothing);
/* This routine broadcasts the backend number selected for record*/

/* insertion to all the backends. %/
I* */
/* request-id : . */
[* consists of (traffic-id,request-no) which uniquely */
1% identifies each request being processed by MDBS */
/* backend-no : */
IAd the number of the backend minicomputer selected to insert ¥*/
/* a new record into the database store */
/* cluster~id : */
/* uniquely identifies each cluster */
16.2 end proc

23.1 proc BROADCASI-ALL-DESCRIPTOR-SEARCH(imput: request-id,

descriptor,descriptor-id, ougtput: nothing);
/* This routine broadcasts a new descriptor id to all the backends.*/

J* */
/* request-id : */
1* consists of (traffic-id,request-no) which uniqueiy identifies*/
/* each request being processed by MDBS */
/* descriptor-id : */
/* uniquely identifies each descriptor */

23.2 end proc

29. end task

B.3 Part III -~ The Post Procgas;gg Process

/* (1) Part 1II : The Post Processing Process */
/* (2) Design : POST-PROCESSING */
/* (3) Designers : A. Orooji, 2.Z., Shi, P.R. Strawser */
/* (4) Date : Feb. 4, 1982 */
/* (5) Modified : Feb. 19, 1982 */
I* Apr. 12, 1982 */
Ad Apr. 26, 1982 */
/* Jun, 22, 1982 */
I* Jun, 25, 1982 */
/* Jul, 8, 1982 */
/®* (6) Purpose %/
/* This is the Post Processing process. It consists of the */
/* functions which must be performed before the results of a */

/* request or a transaction sre forwarded to the host machine. */

} 7 O vyttt o+

Procedure Hierarchy for POST-PROCESSING
POST-PROCESSING

PAGE 102

Pll’
CTIRL
TASK

ggne—

PP PP

RECEIVES RECEIVES

MESS. SENDER HTG

PP PP PP PP PP PP REPLY

RECEIVES RECEIVES BSETEST RECEIVES$ AG?R RECEIVES MONITOR

MRSSAGE ngm Cco AGGR orP ERROR

TYPE Co SAVE oP SAVE MSG
PP PP REPLY PP AGGREGATE
RECEIVES RECEIVES MONITOR RECKIVES POST
ROUTIRG RESULTS PARTIAL OPERATION
INDICATOR RESULTS

REPLY-NTHITOR
SEND-COMPLETION-SIGNAL PP-RESULTS $STORE

PP-REQUEST-COUNT$LAST-REQUEST~CHECK

PAGE 103

Program Structure of POST-PROCESSING (Jackson Chart)

POST
PROCESSING
| |

& & 4
v * v

| |
INITIALIZATION

o

> —

L s

process all
messages

, |
+

process a |*
message +-

& & | I &

L 2 . g

L L
d —

——

—

, | T i
| scheduli 1 | P 11 | | select based on |
i I check e I | RECEIVES I RECEIVES | I message sender l
+ + | MESSAGE | | SENDER | + +

e

M
ha *

—
—

\ i a task in Ioi i a task in loi
! controller +- la backend |

T R e N AP e 3 b AL e P s YN S 1 sk ot 1.0 s e W' A M At e 5 b it - 2

- At 3 TR MAIBADB e e i .

PAGE 104
Program Structure of PP-CTRL-TASK-MS8G (Jsckson Chart)
B P —
PP
CTRL
TASK
MSG
B ——
. [.
[A i
L - +- ———
PP select
RECEIVES based on
MESSAGE message
TYPE type
e —— ——
. ! I | .
b l _l_) o A l
| number of lo regate lo| | ¢ sts |o
, requests in a +- I :ggtlgorl +- vitg
1 traffic unit 1 + | errors 1
) L1 i | | o
i 1 | I |
| PP | | [epp 12 | |PP ','ml.! I
RERCEIVES Rgsng'f RECEIVES Aﬂgl RECEIVES MONITOR
RBSH AGGR oP BRROR P e e
\cor | |save” | | o I'lsavm | | m8e |

PAGE 105

Program Structure of PP-BE-TASK-MSG (Jackson Chart)
—————
PP
BE
MSG
- —
. Il .
] c |
s e e o o 2 st e - L o +
PP select
RECEIVES based on
UTING routing-indicator
INDICATOR ! + +
A [A
i) |
message |o nessage for lo
or +- AGGRE +=
PLY POST
MONRITOR OPERATION
T [R
R | I T 1
| i REPLY] | PP | | AGGREGATE | | results |
RECEIVES MONITOR RECRIVES POST read
SULTS ——— gﬁgg{%g 1 OPERATION | | chec 1

B N —— Y

re

| |

&
¥

| results lo

i results |o¢
ready +- not +-
T‘”"‘* ,.E;‘t‘.%__---,,
{ mEPLY | ido) |
MONITOR I nothing)

+

Y
-

PAGE 106
Program Structure of REPLY-MONITOR (Jackson Chart)
| REPLY-MONITOR |
2 , - <
| select l
based on
| routing-indicator |
\ Lo) .
e I e] ry N ' &
I requests-with- |o Accxncm:-ros'r lov I REPLY-MONITOR |oY|
error +- message +~
| message | u:uge | + | +
| send error 1 send the SEND | eP 11 Results- 11 last |
messages to results to COMPLETION RESULTS$ Buffer results
the host the host SIGNAL STORE full check
machine machine + + + + | check Frm———————t
+ + o+ + — +
] '
| | i
i ResultsBuffer |oi | ResultsBuffer |oi I last o] i not last lo]
| full +- | wot full +=| : results | | results +=|
h h h | ' - v v
| T
+ + PO VLS + + + + + +
send the I do l send the SEND l do l
results to nothing results to COMPLETION nothing
host ———m————t the host SIGNAL Aot +
machine | 1 machine + +

I*
I*

1,

2.
3.
4.

5.
6.
7.

9.

10.
1.
12.
13.
14,
15.
16'
17.
18.

PAGE

(10) Data Structures

The data structure definitions are included in the program */
specifications. */

(11) Program Specifications

Task POST-PROCESSING

/* seunder : */
I* the sender name of the next message for POST~PROCESSING; */
A the possible values sre: “a task in the controller” and “a */
/* task in a backend” */

do initialization work;
while “true” do /* do forever */
if according to the task scheduling this task should release
the processor
then
release the processor and wait;
end if
/* get the next message for POST-PROCESSING */
perform PP-RECEIVESMESSAGE;

107

/* get the sender name of the next message for POST-PROCESSING %/

perform PP-RECEIVESSENDER(sender);
case sender yslue
‘s task in the controller’:
perform PP-CTRL-TASK-MSG;
a task in a backend’:
perform PP-BE-TASK-MSG;
“otherwise”:
system error;
eud case
end while

12.1 pro¢c PP-CTRL-TASK-MS8G (jpput: mothing, outpuyt: nothing);

/* This routine is used vhen there is a message for POST-
;* PROCESSING from a task in the controller.

*

/* TrafficUnit :

/* is either & request or a transaction

/* traffic-id :

/* an integer that identifies a traffic unit

/* request-id :

/* consists of (traffic-id,request-no) which uniquely
I* identifies each request being processed by MDBS

/* MassageType :

/* indicates the type of s message (from s task in the
/* controller) for POST-PROCESSING; the polliblc values are:

*/

/* 'nu-bcr-ot-roqucn:o-in-a-traffic-unit message”, a;;re;atc-*l

A opsrators message’ and ‘requests-with-error message’
/* RequestCountMessagePtr :

*I

12.6
12.7
12.8
12.9

12.10
12.11

12.12
12.13

12.14
12.15
12.16

PAGR 108
[* a pointer to (traffic-id,request-count) */
/* request-count : */
/* number of requests in a traffic unit */
/* AggregateOperatorsMessagePtr : */
1* a pointer to ((request-id,(attribute, */
[* aggregate~operator)[,...])l,...]) */
/* RequestsWithErrorPtr : */
/* a pointer to ((request-id,request,error-message)l,...}) */
/* routing-indicator : */
I* indicates the type of the results sent to REPLY-MONITOR; */
1* its value is: “requests—with-error message” */
/* The message is from REQUEST~PREPARATION. */
/* There is a MessageType that indicates the message contains */
/* - number of requests in a traffic unit (provided by PARSER)¥/
/* - error messages (provided by PARSER) */
/* - aggregate operators in a retrieve request (provided by */
/* PARSER) */
perform PP-RECEIVESMESSAGE-TYPE(MessageType);

case MessageType value
“number-of-requests-in-a-traffic-unit message”:
perform PP-RECEIVESREQ-COUNT(RequestCountMessagePtr);

/* save the information to be used by REPLY-MONITOR later */

perform PP-REQUEST-COUNTSSAVE(RequestCountMessagePtr);

‘aggregate-operators message”:
perform PP-RECEIVESAGGR-OP(AggregateOperatorsiessagePtr);
/* save the information to be used by AGGRRGATE~POST- */
/* OPERATION later ‘ */
perform PP-AGGR-OP$SAVE(AggregateOperatorsMessagePtr);

‘requests-with-error message:
perform PP-RECEIVESERROR-MSG(RequestsWithErrorPtr);
/* send the error messages to the host machine */
routing-indicator := “requests-with-error message”;
perform REPLY-MONITOR(routing-indicator, NWULL,
RequestsWithBrrorPtr);

“otherwise”:
system error;

end case

12.17 epd pxoc

14.1 :,oc PP-BE-TASK-MSG (input: mothing, output: mothing);

/* This routine is used when there is s message for POST- */

;* PROCESSING from a task in a backend. :;
*

/* request-id : L/
/* consists of (traffic-id,request-mo) which uniquely »/
/* identifies each request being processed by)NDBS »/
/* routing-indicator : »/
/* indicates where the results should go to; it also "/

e

re

-

PAGE 109

/* indicates the type of the results; the possible values */
[* are: “REPLY-MONITOR” and “AGGREGATE-POST-OPERATION’ */

/%* Results : */
/% results returned from a backend */
‘/* PartialResults : */
/* partial results returned from a backend (for retrieve */
/* requests wvith aggregate operators) */
/* last : */
/% a flag (“true” or “false”); it indicates whether or mnot*/
/* all the backends have returned their results */
/* AggregateResultsPtr : */
/* 8 pointer to the results computed by AGGREGATE-POST~ */
/* OPRRATION from partial results */

/* Get the request-id and the routing-indicator in the message */

14.2 perform PP-RECEIVESROUTING~INDICATOR(request-id, routing-indicator);
14.3 case routing-indicator yalue
14.4 “REPLY~MONITOR :
/* receive the results returned by the backend */
14.5 perform PP-RECEIVESRESULTS(Results);
/* gend the results to the host machine */
14.6 perform REPLY-MONITOR(routing-indicator, request-id, Results);
14.7 *AGGREGATE~-POST-OPERATION:
/* receive the partial results returned by the backend */
14.8 perform PP-RECEIVESPARTIAL-RESULTS(PartialResults);
16.9 perform AGGREGATE-POST-OPERATION(request-id,
PartialResults, AggregateResultsPtr, last);
14.10 if last '
14.11 then
/* The results are ready. */
/* Send the results to the host machine. %/
14.12 perform REPLY-MONITOR(routing-indicator, request-id,
AggregateResultsPtr);
14.13 end if
14.14 “otherwise”:
14,15 system error;
14.16 end case
14.17 end proc

12.13.1 pro¢ REPLY-MONITOR(inpuyt: routing-indicator,request-id,Results,

output: nothing);

/* This routine sends the results to the host machine, It */
/* will also send a completion signal to the host machine */
;* vhen all the results have been sent. *;
* *
/* routing-indicator : */
/* indicates the type of results; the possible values are:*/
/* ‘requests—with-error message”, “REPLY~MONITOR” and */
/* “AGGREGATE-POST-OPERATION” */
/* request-id :]

)

12.13.2
12.13.3
12.13.4

12.13.5
12.13.6
12.13.7
12.13.8
12.13.9

12.13.10
12.13.11

12.13.12
12.13.13
12.13.14
12.13.15

12.13.16

12.13.17
12.13.18

12.13.19
12.13.20
12.13.21

PAGE 110

/* consists of (traffic-id,request-no) which uniquely */
A identifies each request being processed by MDBS */
/* Results : */
/* is one of the following two */
/* - the results returned from a backend */
/* -~ a pointer to the results when the results are from*/
/* either PARSER or AGGREGATE-POST-OPERATION */
/* last : */
/* a flag (“true” or “false’); it indicates whether or not*/
IAd all the backends have returned their results */
/* BufferPull : */

[* a flag (“true” or “false”); it indicates whether or not*/
/* the buffer used for storing the results returned by the*/
/* backends is full */

Sage routing-indicator yalue
‘requests~vith~error message”:
send the error messages to the host machine;
/* Results is pointing to the results */

“AGGREGATE-"0ST~OPERATION":
send the results of aggregations to the host machine;
/* Results is pointing to the results */
/* send a completion signal to the host machine */
perform SEND-COMPLETION-SIGNAL(request~id);

“REPLY~MONITOR" :
/* store the results returned by the backend in a buffer */
perform PP-RESULTS $STORE(request~id, routing-indicator,
Results, BufferFull, last);
Af BufferFull '

/* the buffer used for storing the results is full */
send the results to the host machine;

end if
if last
then

/* All the backends have returned their results. */

/* Send the results remaining in the buffer */

/* to the host machine. */

send the results to the host machine;

/* All the results for the request have been sent*/
/* to the host machine. */
/* Send a completion signal to the host machine. */
perform SEND-COMPLETION-~SIGNAL(request-id);

end if

‘otherwise’:
system error;

end
12.13.22 ¢pd proc

12.13.7.1

12.13.7.2

12.13 .7 .5

12,13.7.6
12.13.7.7

14.9.1 proc AGGREGATE-POST-OPERATION(jnput

PAGE 111

proc SEND-COMPLETION-SIGNAL(input: request-id, output: nothing);
/* This routine sends a request—completion signal to the */
/* host machine., It also checks to see whether all the */
/* results for a tramsaction have been sent to the host */
/* machine., If so, it sends a transaction~completion signal¥/
/* to the host machine. */
I* */ X
/* request~id : */ g
1% consists of (traffic-id,request-no) which uniquely */ 3
/* identifies each request being processed by MDBS */ :
/* TransactionDone : */ H
A a8 flag (“true” or “false”); it indicates whether or */ §
/% not all the requests in a transaction have been */ g
1* completed */ |
/* NonTransaction : */ |
/* a constant that is assigned to request-no of a */ :
/* request that is not part of a transaction. (We */ j
/* recall that a request is identified by its request—id*/
/* which is (traffic-id,request-no). If the request is */
I* not part of a transaction, traffic-id identifies the */
1* request and request-no can be set to NonTransaction. */
A4 By doing this, we will be able to tell whether or not¥*/
1% a request is part of a tranmsaction.) */

send a request-completion signal to the host machine;
/* Check to see if the request is part of a tramsaction */

if request-no ~= NonTransaction
then
/* The request is part of a tranmsaction. */

/* Indicate that one of the requests in the traffic */
/* unit has been completed and check to see whether */
/* all the results for the traffic unit have been */

/* sent to the host machine. */
perform PP-REQUEST-COUNTSLAST-REQUEST~CHECK(trafftic~id,
TransactionDone);
if TransactiomDone
then
/* All the results for the traffic unit have */
/* been sent to the host machine. */

send a transaction-completion signal to the
host machine;

request-id ,PartialResults,

output: AggregateResultsPtr,last);
/* This routine performs the aggregate operations on the */
/* partial results returned by the backends. It will set */
/* “last’ to indicate whether or not all the backends have ¥/
/* returned their partial results. */

[* */

PAGE 112
/* request-id : */
/* consists of (traffic-id,request-no) which uniquely */
/* identifies each request being processed by MDBS */
/* PartialResults : */
[* partial results returned from a backend (for retrieve */
[* requests with aggregate operators) */
{* AggregateResultsPtr : */
/* a pointer to the results computed by AGGREGATE-POST~ */
/* OPERATION from partial results */
/* last : */
[* a flag (“true” or “false”); it indicates whether or not*/
/* all the backends have returned their results %/
/* NoBackends : */
[* total number of backends in MDBS. (This is a variable */
/* defined in SYSGEN.) */

14.9.2 end proc

module PP-RECEIVE
programs MESSAGE, SENDER, MESSAGE-TYPE, REQ-COUNT, AGGR-OP,
ERROR-MSG, ROUTING-INDICATOR, RESULTS, PARTIAL-RESULTS
datasets MessageBuffer
/* used to store messages for POST-PROCESSING */

8.1 proc MESSAGE (input: nmothing, output: nothing);
/* This routine gets the next message for POST-PROCESSING */
/* and stores it in MessageBuffer. */
8.2 end proc

9.1 proc SENDER (input: nothing, output: sender);
/* This routine returns the sender name of the next message for */

/* POST-PROCESSING. */
/* *[
/* sender : */
* the sender name of the next message for POST-PROCESSING; */
I* the possible values are: “a task in the controller” and */
l* “a task in a backend’ */

9.2 end proc

12.2.1 proc MESSAGE-TYPE (input: nothing, output: MessageType);
/* This routine returns the message type of the next message

/* (from a task in the controller) for POST-PROCESSING.

/*

/* MessageType :

/* indicates the type of a message (from a task in the

/* controller) for POST-PROCESSING; the possible values are:
/* ‘number-of-requests-in-a~traffic-unit message”,

I* ‘aggregate-operators message” and “requests-with~error

/* message”
12.2,2 end proc

12.5.1 proc REQ-COUNT (jinput: nothing, output: RequestCountMessagePtr);

*/
*/
*/
*/
*/
*/

*/
*/

I st —— e * 7T T T T e

PAGE 113

/* This routine returns RequestCountMessagePtr sent by REQUEST- */

/* PREPARATION.

[*
/* RequestCountMessagePtr :
/* ~ a pointer to (traffic-id,request-count)

/* request-count :
/* number of requests in a traffic unit

12.5.2 end proc

*/
*/
*/
*/
*/
*/

12.8.1 proc AGGR-OP (input: nothing, output: AggregateOperatorsMessagePtr);

/* This routine returns AggregateOperatorsMessagePtr sent by
/* REQUEST-PREPARATION.
J*

/* AggregateOperatorsMessagePtr :
/* a pointer to ((request-id,(attribute,
I* aggregate-operator)[,...])l,...}])

12.8.2 end proc

12.11.1 proc ERROR-MSG (input: mothing, output: RequestsWithErrorPtr);
/* This routine returns RequestsWithErrorPtr sent by REQUESI-
/* PREPARATION.

/*
/* RequestsWithErrorPtr :
/* a pointer to ((request-id,request,error-message)[,...])

12,11.2 end proc

14.2.1 proc ROUTING-INDICATOR (input: nothing,
output: request-id,routing-indicator);

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

/* This routine returns the request-id and the routing-indicator¥/

/* in the next message (from a backend) for POST-PROCESSING.

/%
/* request-id :
/* consists of (traffic-id,request-no) which uniquely

A identifies each request being processed by MDBS

/* routing-indicator :

A indicates where the results should go to; it also

/* indicates the type of the results; the possible values
[* are: “REPLY-MONITOR” and “AGGREGATE-POST-OPERATION”

14.2.2 end proc

14.5.1 proc RESULTS (input: nothing, output: Results);
/* This routine returns the results sent by a backend.

/*
/* Results :
1* results returned from a backend

14.5.2 end proc

14.8.1 proc PARTIAL-RESULTS (input: nothing, output: PartialResults);
* This routine returns the partial results sent by a backend.
[*
/* PartialResults :
[* partial results returned from a backend

14.,8.2 end proc

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

PAGE 114 !

end module

module PP-REQUEST-COUNT
programs SAVE, LAST-REQUEST-CHECK
datasets CountBuffer /* used to save RequestCountMessagePtr’s ¥/

12.6.1 proc SAVE (imput: RequestCountMessagePtr, output: nothing);

/* This routine saves RequestCountMessagePtr to be used by */
/* LAST-REQUEST-CHECK later. */
/% */
/* RequestCountMessagePtr : */
/% a pointer to (traffic-id,request-count) */
/* request-count : */
/* number of requests in a traffic unit */

12.6.2 end proc

12.13.7.5.1 proc LAST-REQUEST-CHECK(input: traffic-id,
output: TransactionDone);
/* This routine remembers that one of the requests in the */

/* traffic unit has been completed. It will set */
/* “TransactionDone” to indicate whether or mot all the */
/* requests in the traffic unit have been completed. */
J* */
/* traffic-id : */
/* an integer that identifies a traffic umit */
/* TransactionDone : : */
/* a flag (“true” or “false’); it indicates whether or */
/* not all the requests in a traffic unit have been */
/* completed */
12.13.7.5.2 remember that one of the requests in the traffic unit has

been completed;

12,.13.7.5.3 if all the requests in the traffic unit have been completed

12.13.7.5.4 then

12.13.7.5.5 TransactionDone := “true”;

12.13.7.5.6 free the space used to store the number of requests
in the traffic unit;

12.13.7.5.7 else

12.13.7.5.8 TransactionDone := “false”;

12.13.7.5.9 end i

12.13.7.5.10 end proc

end module

module PP~AGGR~OP

Rrogrems SAVE
/* there will be other procedure(s) in this module, e.g., a */

/* procedure that returns the aggregate operators for a request*/

PAGE 115

datasets AggregateBuffer =
/* used to save AggregateOperatorsMessagePtr’s */

12.9.1 proc SAVE (input: AggregateOperatorsMessagePtr, gutput: nothing);
/* This routine saves AggregateOperatorsMessagePtr to be used */

/* by AGGREGATE-POST-OPERATION later. */
I* */
{* AggregateOperatorsMessagePtr : */
/* a pointer to ((request-id,(attribute, */
/* aggregate-operator)(,...1)l,...]) */

12.9.2 M proc

end module

module PP-RESULTS

ograms STORE
/* there will be other procedure(s) in this module, e.g., a */
/* procedure that returns the results stored in ResultsBuffer*/
datasets ResultsBuffer
/* used to store resul:s returned by backends */

12,13.9.1 proc STORE (input: request~id,routing-indicator,Results,
output: BufferFull,last);
/* This routine stores the results returned by a backend in */
/* a buffer (the results will be used by REPLY-MONITOR */
/* later). It will set “BufferFull” to indicate whether or */
/* not the buffer used for storing the results returned by */

/* the backends is full. It will also set “last’ to */
/* indicate whether or not all the backends have returned */
/* their results, */
/% */
/* request-id : */
/* consists of (traffic-id,request-no) which uniquely */
/* identifies each request being processed by MDBS */
/* routing-indicator : */
/* indicates the type of results */
/* Results : */
/* results retuned from a backend */
/* BufferFull : */
* & flag (“true” or “false”); it indicates whether or */
1* not the buffer used for storing the results returned */
/* by the backends is full */
/* last : */
/* a8 flag (“true” or “false’); it indicates whether or */
/* not all the backends have returned their results */
/* NoBackends : */
/* total number of backends in MDBS., (This is a variable */
/* defined in SYSGEN.) */

12.13.9.2 store the results into ResultsBuffer;
12.13.9.3 set the flag “BufferFull”;

PAGE 116

12.13.904 set the fl.‘ 'lg.t';

12.13.9.5 end proc

end module

19. end task
)
!

¥
A T —t “__“» "- ...____.,_-:___ o e = o
e — .y

PAGE 117

APPENDIX C

THE SSL SPECIFICATION FOR RECORD PROCESSING

The SSL specification for record processing is given in this appendix.
The specification consists of five parts: s control subfunction of record
processing, a retrieve processing subfunction, an insert processing subfuc-
tion, a delete processing subfunction and an update processing subfunction.

They are specified in Parts I, II, III, IV and V respectively.

i C.1 Part I-The Control Subfunction of Record Processing
/* (1) Part 1 : The control subfunction of Record Processing */
/* (2) Design : RECORD PROCESSING */
/* (3) Designers : He Xingui, Masanobu Higashida */
/* (&) Date : Jan. 28, 1982 */
1* (5) Modified : Feb. 1, 1982 */

/* Feb. 18, 1982 */
F /* Mar. 11, 1982 */
/* April 1, 1982 */
/* April 9, 1982 */
! /* April 15,1982 */
/* April 27,1982 */
/* May 17, 1982 */
/* May 19, 1982 */
/* (6) Purpose : ®/
/* The control subfunction of Record Processng is designed for */

/* analyzing the information coming from Directory Management to decide*/
/* what request processing subfunction should be executed, and then to */

/* transfer control to the relevant procedure. */
/* (7) Input: */
/* Input consists of a formated request and a set of disk */

*/

/* addresses where the relevant data are stored.

PAGE 118
3 :
/* (8) Procedure Hiersrchy for The Cemtrol Subfunction */
‘Control Suumcti.a, of Recerd Processing j
l’l:“l“:u }Mt ing gg:t:c g’:c.“‘
ocess ToCEss ™ rocessi
snbﬁ.mctiol Sugc!uctlon thetiu hﬂmct?
I* (9) Jackeon Chart: */

Control Subfumetiom of
Record Processing

&
*

&
>

& ———

+r—19

L 3

—

dp

| Inform

| Process a CONTROLLER
the processing finished

| Get an item im

L
& ———

& e

8 formed request waiti
1 bng‘] inqt he queue . +
' , 1 | | .
| T v
lcttic:c lo' I l!mtct lov 1 - o L:TV i Il“r:t l!'
™ - reques - . reque Teque:
ptocoui.ng | processing | | processing | | precessing |

1 task RECORD_PROCESSING;

list REQUEST: string;
set ADDRESSES: integer;

S WN

while “true” do

W

8 “RETRIEVE”:

9 “UPDATE" :

10 ‘DELETE” :
11 “INSERT" :

12 end case;
13 perform SEND_MESSAGE
14 end while;

/* (11) Program Specifications */

/* This task is to be used to analyze & request and then execute *)/
/* the relevant procedure. */

scalar NewTrack: logical;

perform GET_REQ ADD_NEW(REQUEST,ADDRESSES ,NewTrack);

7 case REQUEST.REQUEST_TYPE yslue

perform INSERT_PROCESSING(REQUEST.RECORD, ADDRESSES,NewTrack);

PAGE 119

/* Do forever. */

/* Get a message(s request REQUEST, */

/* a set of addresses ADDRESSES */
/* and new track indicator NewTrack) */
/* from a queue. */

perform RETRIEVE_PROCESSING(REQUEST.QUERY,

REQUEST.TARGET, ADDRESSES);

perform UPDATE_PROCESSING(REQUEST.QUERY, ADDRESSES,

REQUEST.attribute ,REQUEST.valuel);

perform DELETE_PROCESSING(REQUEST.QUERY, ADDRESSES);

/* Send completion signal to CONTROLLER. */

C.2 Part 11-Ihe Retrieve Processing Subfunction

/* (1) Part II : Retrieve Processing Subfunction
/* (2) Design : RECORD PROCESSING
/* (3) Designers : He Xingui, Masanobu Rigashida

/* (&) Date Jen, 28, 1982
/* (5) Modified Feb. 1, 1982
/* Feb. 18, 1982
/* Mar. 11, 1982
/* April 1, 1982
/* April 9, 1982
/* April 15,1982
/* April 27,1982
I* May 17, 1982
/* May 19, 1982
/* (6) Purpose :

/* The procedure is designed for retrieving the records

/* satisfying the query in the request.

PAGE 120

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

PAGE 121
/% (8) Procedure Hierarchy for Retrieve Processing Subfunction */
Retrieve Procuru Subfunction
‘ L i
GET_BUFFER CHECK_QUERY PROJECT FLUSH
- - BUFFER
FETCH_TO AGGRE STUFF
TRACK) OPERATION

§,

PAGE 122
/* (9) Jackson Chart: */
Retrieve
requast
ptoecllxng*
L R —
. | I ! .
R A S S
i Get x:sun:_‘i illtrieve i i Flush azsuxz_'
| BUFFER | | results | | BUFFER 1
o, i i [.
AiAA"LA l‘
l Initialise I i Process data I*] istuff l
| partial results | track by track + Ipartial results!|

&

i Fetch one track] Retrieve]
1 to TRACK_BUFFER! | records 1
+ + I A
Select records]
in TRACK _BUFFER +-
| one by one 1
) |
Check whether the
record has been
| marked for deletiom |
.) l e a l 8
| Deleted lof | Mot deleted lol
A + ' - + + ' 4
| Do mothing | | Check whether the |*
+ + record satisfies <+~
| the query 1
- 2l I
| . ﬂ .
i Batisfied loi iwhan oot satisfied lo
| processing +-| 1 =1
+ I + ‘ l +
R [. . | | Do nothing |
| Collect o] i t:te lo .
the +- opera
Tesults and colloct
into RESULT_ the results
| BUFFER 1 into RESULT_

et]
P e

e —— o
Stuff into
the buffer

[St ——-

+

PAGE 123

L 3
+

3 Check whether the
! record satisfies
; the query

‘ |
!

Check the record [*
: with each +-
| | conjunction

' |
k

Check the record |*
with each +-
gred;cage in

he conjunction

&

L

+

&
v

+

PAGE 124

/* (11) Program Specifications */

(-)
.
(]

proc RETRIEVE_PROCESSING(input: QUERY,TARGET,ADDRESSES);
/* This procedure is to be used for processing of RETRIEVE request. */

list QUERY,TARGET,result: string; .
set ADDRESSES: integer;
arrasy TRACK_BUFFER,RESUT_BUFFER: word;
scalar indexA,indexB: integer;
/* these are pointers for ADDRESSES and TRACK BUFFER respectively */
scalar satisfied, ok : logical;
gcalar sum,count,max,min: real;

e o o
~ o [I R)

perform GET_BUFFER(RESULT_BUFFER); /* Get RESULT_BUFFER. */
/* Initialize the partial results. */
sum:=0;
0 count:=0;
1 max:=the smallest number;
2 min:=the largest number;

MMM O O 0000w
- .
=0 o

/* Process data track by track . */
8.13 for each address ADDRESSES(indexA) in ADDRESSES do

/* Fetch one track into TRACK_BUFFER. */
8.14 perform FETCH_TO_TRACK_BUFFER(indexA,TRACK_BUFFER);

/* Select records in TRACK BUFFER one by one. */
8.15 for each record TRACK_BUFFER(indexB) in TRACK_BUFFER do
8.16 if the record is not marked a “deletion flag”
8.17 then
/* Check whether the record satisfies the QUERY, */

8.18 perform CBECK_QUERY(QUERY,TRACK_BUFFER, indexB,satisfied);

8.19 if satisfied="true”
8.20 then
8.21 if there is aggregate operation
8.22 then
/* Compute partial results and count. */
8.23 perform AGGREATE_OPERATION(TRACK_BUFFER, indexB,

sum,count ,max,min, TARGET) ;
8.24 else
/* Get result by projection. */
8.25 perform PROJECT(TRACK_BUFFER,indexB,result,TARGET); .
/* Collect it into RESULT_BUFFER. */

8.26 perform STUFF_BUFFER(RESULT_BUFFER,
result,length_of result);

8.27 end if;

8.28 end if;

8.29 end if;

8.30 end for; /* indexB */
8.31 ond for; /* indexA */

PAGE 125

/* Stuff the partial results into RESULT BUFFER, if any. */
8.32 perform STUFF_BUFFER(RESULT_BUFFER, sum, length of_sum);
8.33 perform STUFF_BUFFER(RESULT BUFFER, count, length_of_ count);
8.34 perform STUFF_jUFFER(RBSULI_SUFFBR, max, 1ength~pf_nax).
8.35 perform STUFF_BUFFER(RESULT_ BUFFER, min, length_of_min);

/* Send the collected results in RESULT_BUFFER to CONTROLLER. */
8.36 perform FLUSH_BUFFER(RESULT_BUFFER, ok);
8.37 end proc;

8.18.1 proc CHECK_QUERY(input: QUERY,TRACK_BUFFER,indexB, output: sat1sfzed),
/* This procedure is used to check whether the record in */

/* TRACK_BUFFER(indexB) satisfies the QUERY or not. */

8.2 1list QUERY: string;
8.3 array TRACK_BUFFER: word;
8.4 scalar indexB,indexC,indexP: integer;
/* these are pointers for TRACK_BUFFER, QUERY.CONJUNCTION */
/* and QUERY.CONJUNCTION.PREDICATE respectively. */
8.18.5 scalar satisfied: logical;

/* Check whether the record satisfies the QUERY */
8.18.6 for each conjunction QUERY(indexC,*) in QUERY do
satisfied="true”;
[* Check whether the record satisfies the conjunction */
/* pointed by indexC. */
for each predicate QUERY(indexC,indexP) in QUERY(indexC,*) do
if The record in TRACK_BUFFER(indexB) does not satisfy
the predicate in QUERY(indexC,indexP);

.
—

Q@OQOO@O@Q @
.

.
Qo ~

then
satisfied:="false”;
exjt the loop;
end if;
nd for; /* indexP */
if satisfied:="true” then
Ieturn ;
end if;
3 / *indexC */
18 [-H

* *
=\
Ll

[]
Pt Pt P Pt Pt Gt Gt ot s et

b e e
[NV 3 NV X

u—
~
E .

- x--X--N--R- X-N-X.N. NI ®
L]

PAGE 126

C.3 part 1I1-The Insert Processing Subfunctjon

/* (1) Part III : Iunsert Processing Subfumctiom */
/* (2) Design : RECORD PROCESSING */
/* (3) Designers : He Xingui, Masanobu Higashida */
/* (4) Date : Jan. 28, 1982 */
/* (5) Modified : Feb. 1, 1982 */
1* Feb. 18, 1982 */
1* Mar. 11, 1982 */
1* April 1, 1982 */
1* April 9, 1982 */
g April 15,1982 */
/% April 27,1982 */
/* May 17, 1982 */
/% May 19, 1982 *f
/* (6) Purpose : */
[* The procedure is designed for inserting a record into the disk*/
/* indicated by a address. */

v . _,4....‘|
PAGE 127

(8) Procedure Hierarchy for Insert Processing Subfunction */

Insert processing Subfunction

+

-+

——— ct—

FETCH_TO_TRACK_BUFFER INSERT RECORD STORE_TRACK_BUFFER

PAGE 128

{* (9) Jackson Chart: */

Insert
request

processing
'I I

+ —

| r———— -

s - Py ' 4
rshould it insetti | Insert record | I Store TRACK BUFFER
into a new track into TRACK_ back to disk
+ + BUFFER + +
| No Jol | Yes lol

I I

T — -+ + P

Fetch one IDo nothing l

track to

TRACK_BUFFER| + +

Y A
v

r

T -4.._.-‘._-,“1’1

PAGE 129
/* (11) Program Specifications */
11.1 giﬁg INSERT, PROCBSSIIG(xnput RECORD, ADDRESS ,NewTrack) ;
1is procedure is used for 1nlertxn; the record into fIACK BUFFER */

I according to ADDRESS. */ f
11.2 gg ADDRESS: integer; :
11.3 BUFFER: word;

11.4 RECORD: string;
11.5 NewTIrack: log1cal.
ii.g NewTrack="false”
‘ Petch one track indicated ADDRESS to TRACK BUFFER. */
ii.g H_TO_TRACK_BUFFER(ADDRESS, TRACK_BUFFER);
. n :
/* Insert the record into the TRACK BUFFER. ®/
11.10 perform INSERT nxcoxn?xncoxn TRACK_BUFFER);
/* Store TRACK BUFFER back to the disk accordz to ADDRESS. */
11.11 perform STORE_TRACK_BUFFER(ADDRESS ,TRACK_B! n§
11.12 end proc;

C.4 Part 1V-The Updgte processing Subfunction

[* 1) Part IV : Update processing Subfunction */
/* (2) Design : RECORD PROCESSIN)] */
[* 3 Desxgnert : He Xingui, Masanobu Higashida */
[* 4) Dat : Jan. 2 , 1982 */
I* (5 Hodxfxed : reb. 1982 */
[* Feb. 18, 1982 */
I* Mar, 11, 1982 */
[* Aprxl 1, 1982 */
[* April 1982 */
[* April 15.1982 */
[* Aprzl 27,1982 */
[* May 17, 1982 /
(* May 19, 1982 */
[* (6) Putpole : */
* procedure is designed for 1np1enent1ng the update request *I
[* with the “mbdifier of type 0, type I or t I. the request wit

/* modifier of tape III or IV is lmplemente as u retrieve followed by */
/* another type 0 update. */

L 4

r " lo——. . e —— _

4

PAGE 130
/* (8) Procedure Rierarchy for Update Processing Subfunction ./ i
Update Processing Subfunction ‘
GET_BUFFER mcnl'ro CHECK Y l S‘RI)II LUSH Lnn {
- TRACKBUPYER —QUER TRACE™ - |

BUFIEY

GET IBUTE UPDATE_RECORD CHRECK CLUlll'l smrlwnn DELETE

SALOE CLBUTE_ = - - RECORD™ ‘
I . o

W T ey T v —— T s

PAGE 131

/* (9) Jackson Chart: */

+ —

Update request Processing

-y

| Get usuu_] I Update | ' Flush RESULT_ |
| BUFFER | recordaA ! BUFFER 1
v A"' . l v ‘. h
| Process data f*]
| track by track +-|
. | b
Fetch one trac 7St0te TRACK

& r—m—

ack| |Update]
to TRACK_BUFFER| |records

>

back to dxsk

+

Select records |*
in TRACK_BUFFER +-
| one by oue !

|
Check if the record]

pro
b 2

has been marked for
! deletion

I |
1 Deleted |o Not deleted |o
o |)
Check whether the [*
recoxd satisfies +-
the query
| |

When not satisfied lo

+—+
- —
+—t

Do nothing

+—4

re
*

+—+
p —————

Satisfied processing |o

& —
ot
o
$—

Compute 1 Update the [[Check if change |
valuel record in cluster or no
1 ATRACK BUFFERJ 1 1
v ‘T v v | .) | R .
i t needs to loi i It does not need Ioi
. 1 change cluster +- | to change cluster + 1
e ' e l i) & Y ')
| Collect the 11 Delete original | .
record into record in the Do nothing
TRACK_BUFFER !

|RESULT_BUFFER
’ I

———

Jr VA
stuff intoI
the buffer

e e s o e

&
b

PAGE 132

/* (11) Program Specifications */

9.1 proc UPDATE_PROCESSING(input; QUERY,ADDRESSES,attribute,valuel);
/* This procedure is to be used for processing of UPDATE request. */

9.2 list QUERY: string;

9.3 set ADDRESSES: integer;

9.4 array TRACK_BUFFER,RESULT_BUFFER: word;
9.5 scalar attribute,valuel: string;

9.6 scalar indexA indexB: integer;

/* These are pointers for ADDRESSES and TRACK_BUFFER */
/* respectively. */
9.7 scalar satisfied, ok: logical;
9.8 perform GET_BUFFER(RESULT_BUFFER); /* Get RESULT_BUFFER. */
/* Process data track by track . */

9.9 for each address ADDRESSES(indexA) in ADDRESSES do

/* Fetch one track into TRACK_BUFFER. */
9.10 perform FETCH_TO_TRACK_BUFFER(indexA,TRACK_BUFFER);
/* Select records in TRACK_BUFFER one by one. */
9.11 for each record TRACK_BUFFER(indexB) in TRACK_BUFFER do
9.12 if the record is not marked a “deletion flag”
9.13 then :
i /* Check whether the record satisfies the QUERY. */ :
' 9.14 perform CHECK_QUERY(QUERY,TRACK_BUFFER,indexB,satisfied);
9.15 if satisfied="true”
9.16 then /* Update the retrieved record in */
; /* TRACK_BUFFER(indexB) and collect it into ®/
/* RESULT_BUFFER, or store it back to */
/* the original place. */
9,17 perform UPDATE(indexB,attribute,valuel,
TRACK_BUFFER ,RESULT_BUFFER);
9.18 end if;)

9.19 end if;
9.20 end for; /* indexB */

/* Store TRACK_BUFFER back to disk. */
9.21 perform STORE_TRACK_BUFFER(indexA,TRACK BUFFER);
9.22 end for; /* indexA */

/* Send the collected results in RESULT_BUFFER to CONTROLLER. */
9.23 perform YLUSE_BUFFER(RESULT_BUFFER, ok);

9.24 end proc;

T

- ,
T — ‘ e

PAGE 133

9.17.1 proc UPDATE(indexB,attribute,valuel ,TRACK BUFFER,RESULT_BUFFER);
/* This procedure updates the record in TRACK_BUFFER(indexB). */

9.17.2 axray TRACK_BUFFER,RESULT_BUFFER: word;

9.17.3 scalar attribute,value,valuel: string;

9.17.4 scalsr indexB: integer; /* This is a pionter for TRACK_BUFFER */
9.17.5 scalar check_result: logical;

/* Get the attribute value of the record in TRACK_BUFFER(indexB).*/
9.17.6 perform GET_ATTRIBUTE_VALUE(indexB,attribute,value);

/* Here £(...) is a function procedure. */
9.17.7 valuel=f{value);

/* Update the value of attribute in TRACK_BUFFER(indexB) */
/* into valuel. */
9.17.8 perform UPDATE_RECORD(attribuie,valuel ,TRACK_BUFFER,indexB);

/* Check if the record needs to change cluster or not. */
9.17.9 perfors CHECK_CLUSTER(TRACK_BUFFER, indexB,cluster_changed);

9.17.10 if cluster_changed="true’

9.17.11 then /* The updated record needs to change cluster. */
/* Collect the record into RESULT_BUFFER. */
9.17.12 perform STUFF_BUFFER(RESULT_BUFFER,TRACK_BUFFER(indexB),
length_of the_record);
i /* Delete the original record in TRACK_BUFFER. */
‘ 9.17.13 perform DELETE_RECORD(TRACK_ BUFFER,indexB);
9.17.14 end if;
9,17.15 end proc;

4 —— -]
PAGE 134

C.5 Part V-The Delete Processipg Subfupction

/* (1) Part V : Delete Processing Subfunction */

/* (2) design : RECORD PROCESSING */

/* (3) Designers : He Xingui, Masanobu Higashida */

/* (4) Date : Jan. 28, 1982 */

/* (5) Modified : Feb. 1, 1982 */ .
/* Feb. 18, 1982 */

/* Mar. 11, 1982 */

/* April 1, 1982 */

/* April 9, 1982 */

/* April 15,1982 */

/> April 27,1982 */

/% May 17, 1982 */

/% May 19, 1982 */

/* (6) Purpose : */

/* The procedure is designed for deleting the records satisfying */

/* the query in the request. */

I "““*T@@gga

PAGE 135
/* (8) Procedure Hierarchy for Delete Processing Subfunction */
Delete PtocelTng Subfunction
FETCH_TO CHECK_QUERY DELETE STORE_TRACK_BUFFER
TRACK_BUFFER
/* (9) Jackson Chart: */
m——————
Delete
request _
processing
+—--—T ----- +
i Process data l*i
| track by track +-|
) I .
$——t ,
A e A ' e rFe e
i Fetch one track] i Delete(nnrk)] i Store TRACK_BUFFER |
| to TRACK_BUFFER| | records 1 | back to disk 1
+ + : | + ‘ +
| Select records |*|
in TRACK_BUFFER +-
| one by ome

+

Check if the record
has been marked for
deletion

| |
+ +
1_Deleted lol Not deleted lo

v h

& &

| Do nothing
fo——

= o e

b —
o —

o—
+—

Py "
v *

Check whether the |*
record satisfies +-
the query

Satisfied |o
| processing +-

) ! [
Mark the

record in
TRACK_BUFFER

. +

&
*

A

&
T

When not satisfied (o
-

+—s
o o o

+

>

Do nothing

P mm—

f- Q-
—

PAGE 136

/* (11) Program Specifications %/

10.1 proc DELETE_PROCESSING(input: QUERY,ADDRESSES);
/* This procedure is to be used for processing of DELETE request. */

10.2 list QUERY: string; . ‘
10.3 set ADDRESSES: integer;
10.4 array TRACK_BUFFER: word;
10.5 scalar indexA,indexB: integer;
/*These are pointers for ADDRESSES and TRACK_BUFFER respectively */
10.6 scalar satisfied: logical;

/* Process data track by track . */

10.7 for each address ADDRESSES(indexA) in ADDRESSES do

/* Fetch one track into TRACK_BUFFER. */
10.8 perform FETCH TO_TRACK_BUFFER(indexA,TRACK_BUFFER);
/* Select records in TRACK_BUFFER one by one. */
10.9 for each record TRACK_BUFFER(indexB) in TRACK_BUFFER do
10.10 if the record is not marked a “deletion flag”
10.11
/* Check whether the record satisfies the QUERY. */
10.12 perform CHECK_QUERY(QUERY,TRACK_BUFFER,indexB,satisfied);
i 10.13 if satisfied="true’
' 10.14 then /* Mark the retrieved record in TRACK BUFFER(indexB).*/
10.15 perform DELETE(TRACK_BUFFER, indexB);
10.16 end if;
10.17

end if;
10.18 epd for; /* indexB */
1 10.19 perform STORE_TRACK_BUFFER(indexA,TRACK_BUFFER);
/* 8tore TRACK_BUFFER back to disk. */
10.20 epd for; /* indexA */
10.21 end proc;

PAGE 137

APPENDIX D

THE SSL SPECIFICATION FOR THE TEST REQUEST GENERATION AND EXECUTION PACKAGE

The program specification for the test request generation and execution
package is shown in this appendix. The specification design is composed of
two parts. Part one includes the top level design. Part two includes the

module concerned with the handling of the output from a test.

D.1 Part 1 - The Top Level of Test Request Generatjon gnd Executjon

/* (1) Part I - The Top Level of Test Request Generation and */
/* Execution */
/* (2) Design: MDBS TEST */
/* (3) Designer: D.S. Kerr ' */
/* (4) Date: July 8, 1982 */
J* */
/* (6) Purpose: */

This program can be used to test and demonstrate MDBS. The
execution of this program is called a session. Each session can be
divided into any number of subsessions. During a subsession the user
3 can do one of the following:

(A) Bxecute a list of requests that was previously
stored in a file.

(B) Prompt the user for a list of requests to be
1 stored in a file for later use.

(C) Retrieve a list of requests that were previously
stored in a file and then allow the user to select
requests from that list for execution. This selection can

, be done in any order. The user will also be able to enter
. 8 new request to be executed.

(D) Modify an existing list of requests that was
previously stored in a file.

In this version, requests are executed ome at a time. A request
is sent to MDBS. Then the program waits for a response before sending
L the next request. Transactions are not allowed.

Output may be directed to the user”s terminal or to a file or to

both.

PAGE 138

(8) Procedure Hierarchy for MDBS Test

MDBS Test
SDBSTSSION
NEH_TISI_SUB MODIFY_SUB SELECT_SUB OLD_LIST SUB
ENTER _AND_SAVE
REQUESTS — -
T + +
DETERMINE_INPUT_FILE
GET_NEW_REQUEST
ENTER) SAVE__
REQ
DETERMINE_INPUT_FILE
DISPLAY
OUTM$
EXECUTE
GET_NEW_REQUEST
| | |
DETERMINE_INPUT_FILE I
OUTMS$
EXECUTE

ENTER_AND_SAVE
REQUESTS —

& &
v

NEW_REQUEST_SUB

-+

r
+

INSERT_SUB UPDATE_SUB DELETE_SUB RETRIEVE_SUB

PAGE 139

(10) Data Structures

The data structures definitions are included at the beginning of each
procedure definition in (11) below.

(11) Program Specifications

1. task MDBS Test;

2. scalar more-subsessions; /* flag: TRUE - continue, FALSE ~ stop */

3. Print initial message to user;

4, more-subsessions := TRUE;

5. vhile more-subsessions do

6. pexform SUBSESSION;

7. Prompt for continue message;

8. Read continue message;

9. if user does not want to continue

10. then

11. more~subsessions := FALSE;

12. end if

13. end while;

14. end task;

6. procedure SUBSESSION;
/* During a subsession the user is able */
[* to generate a group of requests. (NEW_LIST) */
/* to modify an old list of requests. (MODIFY) */
/* to select requests, one at a time from a list %/
/% of requests. (SELECT) */
/* to run a group of requests. (OLD_LIST) */

6.1 scplar current-request-file; /* The name of the file */

/* Initial value should be NULL. This name must be */
/* retained from onme subsession to the mext. */
6.2 scalar type-of-subsession; /* Possible values are NEW_LIST,

MODIFY, SELECT and OLD_LIST */

3 Prompt for next type-of-subsession;
b Read next type-of-subsession;
o5 case type-of-subsession yalue
.6 NEW_LIST: /* Enter a new request-list */
perform NEW_LIST SUB(current-request-file);

7 MODIFY: /* Modify an old list */

perform MODIFY_SUB(current-request-file);
.8 SELECT: /* Select requests, one at a time, from an */

/* existing request-list */

perform SELECT_SUB(current-request-file);
6.9 OLD_LIST: /* Execute an existing request-list */
perform OLD_LIST SUB(current-request-~file);

PAGE 140

6.10 otherwige: Print error message;
6.11 end case;
6.12 end procedure;
[
6.6.1 procedure NEW_LIST SUB(gutput: current-request-file);
6.6.2 scalar current-request-file; /* name of the file %/
/* Asks user for requests - ome at a time. */
[* Saves list of requests in a file with file-name given by */
/* user. */
6.6.3 scalar request-list-file-name;
/* of file to use to store the requests */
6.6.4 record request;
6.6.5 scalar next-step;
/* I(nsert), R(etrieve), U(pdate), D(elete) or F(inish) */
6.6.6 Prompt for request-list-file-name;
6.6.7 Read request-list-file-name;
6.6.8 Open file(request-list-file-name) output;
6.6.9 perform ENTER_AND_SAVE_REQUESTS(request-list-file-name);
6.6.10 Close file(request-—list-file-name);
6.6.11 current-request~file := request~list-file-name;
6.6.12 end procedure;
i
6.7.1 procedure MODIFY_SUB(input/output: current-request-file); 1
6.7.2 scalar current~request-file; /* The name of the file */ a
/* Retrieve an old request-list and then allow the user to */
/* modify it. Requests are examined one at a time allowing */
/* changes to be made to each request in turn. A change */
/* can be */ j
/* add new request before this one. */
/* modify this request. */
/* remove this request. */
/* make no changes to this request. */
/* Note that we must have a way to append new requests at */
/* the end of the input request list. */
A */
/* The input file (called input-request-file) may be */
/* either the current-request-file or a different existing */
/* request file. */
I */
/* The output file (called new-request~file) may be *f
/* either the next version of the imput-request-file or a */
/* new file. */
6.7.3 scalar input-request-file; /* The list of requests to be modified. */
6.7.4 8salaxr new-request-file; /* The new list of requests, */
6.7.5 2salar next-version; /* flag: TRUR - set new-request-file to next */

/* version of input-request-file, FALSE - get new name. */

W W DR RNNPN

6.7.40

PAGE 141 |

record request;

scalar more-requests-in-input-request-file; /* continuation flag */
scalar more-requests—-to-enter; /* continuation flag */

scalar change-type; /* ADD, MODIFY, REMOVE, or NOCHANGE */ !

gcalar next-step;
/* I(nsert), R(etrieve), U(pdate), D(elete) or F(inish) */

/* Determine input-request-file to be modified. */

perform DETERMINE_INPUT_FILE(current-request-file,
input-request-file);

open file(input-request-file) inmput;

/* Determine if user wants the name of the new-request-file to */
/* be the next version of the input-request-file or a new name.*/
Prompt user to determine next-version;

Read next-version;

if next~version

. then
Set new-request-file to mext version of
input-request-file;
else

Prompt for new-request—file name;
Read name of new-request-file;
end if;
open file(new~request-file) output;

Read first request from input-request-file;
more-requests—in-input-request-£file := TRUE;

while more-requests—in-input-request-file do
Prompt user for change-type for this request;
Read change-type;
case change-type yalue
ADD: /* enter and save the mext request */
perform GET_NEW_REQUEST(request);
Write request into new-request-file;
MODIFY:
Prompt and get modified request from user;
Write new request into new-request-file;
Read next request from input-request-file;

REMOVE:
Read next request from input-request-file;

NOCHANGE : -
Write current request into new-request~file;
Read next request from input-request-file; H

otherwise: Print system error message;

end case;
end while;

/* Note that at this point all the old requests have been */

/* processed. However it is possible that the user wants to */

/* append more requests. */

Prompt user that input file has been processed, but that more
requests may 8till be appended;

VA A S AR RN
S, s
.M R4

o ———— c—— a — [

e

e

PAGE 142

6.7.41 perform ENTER_AND SAVE REQUESTS(new-request—file);
6.7.42 close file(input-request-file);

6.7.43 close file(new-request-file);

6.7 .44 current-request-file := new-request-file;

6 “.45 end procedure;

1 procedure SELECT_SUB(input/output: current-request-file);
.2 scalar current-request-file; /* The name of the file ¥/

/* Retrieve an old list of requests. */
/* Allow user to select from this list. */
/* Also allow user to enter new request. */

scalar input-request-file; /* The file containing the requests. ¥/
6.8.4 array requests(MAX NUMBER_OF_REQUESTS);
/* from input-request-file */

6.8.5 scalar number-of-requests; /* The actual number in */

/* input-request-file must be less than */

/* MAX_NUMBER OF REQUESTS */
.6 scalar request-number; /* of the request chosen */
.7 record new-request; /* Provided by user. */
.8 record response; /* to the request being executed. */

-]
.
[- -]
.
w

.9 scalar more-to-execute; /* flag to control loop */
.10 scalar next-operation; /* Values can be REQUEST_NUMBER, DISPLAY, */
/* NEW_REQUEST or STOP */

/* Determine the new input-request-file to use for */
/* this subsession. */

6.8.11 perform DETERMINE_INPUT FILE(current-~request-file,
input-request-file);
6.8.12 open(input-request-file);
6.8.13 Read and store input-request-file into requests checking that
number-of-requests is less than MAX NUMBER_OF_REQUESTS;
6.8.14 close(input-request-file); '
6.8.15 perform DISPLAY(requests);
/* Determine whether response is to go to CRT, file or both. */
6.8.16 perform OUTMS$FORMAT;
6.8.17 more-to—execute := TRUE;
6.8.18 while more-to-execute do
6.8.19 Prompt user for next-operation /* It should be either a */
/* request-number, a request-to-display or a ®/
/* new-request */
6.8.20 Read next-operation;
6.8.21 case next-operation yalue
6.8.22 REQUEST_NUMBER :

Check that request-number is less than
number—of-requests;

PAGE 143

6.8.23 perform EXECUTE(requeescs(request-number),
Tresponse);
/* Output the response to CRT, file or CRT&file,
as appropriate. */

6.8.24 perform OUTMSRESPONSE(response);
6.8.25 DISPLAY: perform DISPLAY(requests);
6.8.26 NEW_REQUEST:
perform GET_NEW_REQUEST(new-request);
6.8.27 perform EXECUTE(new-request, response);

/* Output the response to CRT, file or CRT&file,
as appropriate. %/

4 6.8.28 perform OUTMSRESPONSE(response);
6.8.29 STOP: more-~to—execute := FALSE;
6.8.30 otherwise: print error message;
6.8.31 end case;
6.8.32 end while;
6.8.33 perform OUTMSFINISH;
6.8.34 current-request-file := input-request-file;
6.8.35 end procedure;

6.9.1 procedure OLD_LIST SUB(current-request-file);
6.9.2 scalar current-request-file; /* The name of the file */

/* Retrieve and execute an old list of requests. */
6.9.3 scglar input-request-file /* The file containing the requests. */
6.9.4 record request; ‘
6.9.5 record response; /* to a request that has been executed., */

/* Determine the nev current-request-file to use for this %/
/% subsession. */

6.9.6 perform DETERMINE INPUT_FILE(current-request-file,
input-request-file);

6.9.7 Open(input-request~file) input;

6.9.8 Read first request from input-request-file;

/* Determine whether response is to go to CRT, file or both. */
6.9.10 yhile more-requests do
6.9.11 EXECUTE(request, response);
/* Output the response to CRT, file or CRT&file, as */
/* appropriate. */

6.9.12 perform OUTMSRESPONSE(respomse);

6.9.13 Read next request from input-request-file;
6.9.14 end yhile;

6.9.15 perform OUTM$PINISH;

PAGE 144

6.9.16 close(input-request-file);
6.9.17 current-request-file := input-request-file;

6.9.18 end procedure;

6.6.9.1 procedure ENTER_AND_SAVE_REQUESTS
(input: request-list~file-name);
6.6.9.2 scaler request-list-file-name;
/* of file to use to store the requests */
6.6.9.3 record request;
6.6.9.4 scalar next-step;
/* I(nsert), R(etrieve), U(pdate), D(elete) or F(inish) */

6.9.5 next-step := I;

6.9.6 while next-step ™= F do
6.9.7 Prompt for next-step;
«6.9.8
.6.9.9

case next-step value
I: /* enter and save the next insert request */
perform INSERT_SUB(request);

(- - - W - -)

6.6.9.10 Write request into request-list-file-name ;

6.6.9.11 R: /* enter and save the next retrieve request */

6.6.9.12 perform RETRIEVE_SUB(request);

6.6.9.13 Write request into request-list-file-name ;

6.6.9.14 U: /* enter and save the next update request */

6.6.9.15 perform DELETE_SUB(request);

6.6.9.16 Write request into request-list-file-name ;

6.6.9.17 D: /* enter and save the next delete request */

6.6.9.18 perform DELETE_SUB(request);

6.6.9.19 Write request into request-list-file-name ;

6.6.9.20 F: /* Finish entering requests */

6.6.9.21 otherwise: Print error message;

6.6.9.22 end case;

6.6.9.23 end while;

6.6.9.24 end procedure;

6.7.11.1 procedure DETERMINE INPUT_FILE(jpput: current-request-file,

6.7.11.2 output: input-request-file);

6.7.11.3 scalar current-request-file;

6.7.11.4 scalar input-request-file;)
/* Determine the input file to be used. It may be either */ ‘
/* the current-request-file or a different existing */ B |
/* request file. ®/

6.7.11.5 _gllg; modify-current-file~-flag;
/* TRUE - select new input file */

if current-request-file is NULL

6.7.11.6

6.7.11.7 then

6.7.11.8 Prompt for name of input-request-file;
6.7.11 -9 Read name of input-request-file;

—

| PAGE 145
!
%
!
? 6.7.11.10 else /* Determine if user wants to use the */
/* current~request-file or a different old file. */
6.7.11.11 Prompt user to determine modify-current-file-flag;
6.7.11.12 Read modify-current-file-flag;
6.7.11.13 if modify-current~file-flag
6.7.11.14 then
6.7.11.15 Prompt for name of input-request-file;
6.7.11.16 Read name of input-request-file;
6.7.11.17 else
6.7.11.18 input-request-£file := current-request-file; .
6.7.11.19 end if; ‘
6.7.11.20 end if;
6.7.11.21 end procedure;

9.1 procedure GRET_NEW_REQUEST(output: request);
9.2 record request; /* to be obtained from user */

/* Prompts user for information necessary to enter a */
/* new request. Returns the request. */

6.7.29.3 scalar request-type;
/* I(nsert), R(etrieve), U(pdate) or D(elete) */

Prompt for next request—-type;
Read request-type;
case request-type yvalue
1: pexform INSERT_SUB(request); :
U: perform UPDATE_SUB(request); ,
D: perform DELETE_SUB(request); }
R: perform RETRIEVE_SUB(request); ;
otherwise: Print error message; !
end case; '

end procedure;

) .
== \D O3~ O AN

N -0

e o & o o o o & o
® & & o o o o o »
NNNMNNDNMMONDNDN

(-) (- - - - N - - N -)

-~ sSNNNNNNNN
L - L - -R-B - - TR - Y- -
*

L d
N
L]
-
w

asmiiseatilanech

6.8.15.1 procedure DISPLAY(jnput: requests);
/* Display the requests and their numbers at the */

/* terminal. */

6.8.15.2 array requests(MAX NUMBER_OF_REQUESTS);
/* to be displayed. */

6.8.15.3 end procedure;

PAGE 146

6.8.23.1 procedure EXECUTE(input: request, gutput: response);
/* Ask MDBS to execute this request. Return the response. */

6.8.23.2 record request; /* to be executed ¥/
6.8.23.3 record response; /* to the execution of the request */

6.8.23.4 end procedure;

D.2 Part 1I - The Output Module for Test Execution

/* (1) Part 1I - The Output Module for Test Execution */
/* (2) Design: OUTM */
/* (3) Designer: D.S. Kerr */
/* (&) Date: July 8, 1982 ®/
I* */
/* (6) Purpose: */
/* The following three procedures are used to handle the displaying */
/* and/or saving of the responses to the execution of the requests. %/
/* The default is to display the responses on the CRT. */

(8) Procedure Hierarchy for the Module OUTM

FORMAT
RESPONSE
FINISH

(10) Data Structures

The data structures definitions are included as part of the module and at _
| the beginning of each procedure definition in (11) below. -

PAGE 147

(11) Program Specifications

module OUTM

programs FORMAT, RESPONSE, FINISH;
data sets

/* Variables controlling the output of responses */
scalar CRT-output-flag;
/* TRUE if output is to be displayed on CRT. */
/* Initial value is TRUE. */
scalar file—output-flag;
/* TRUE if output is to be put into a file. */
/* Initial value is FALSE, */
3 /* CRT-output-flag and/or file-output-flag must be TRUE */
scalar response-file-name;
/* the name of the file if output is to be made */
/* to a file. */

end module;

1. procedure FORMAT;

/* Determines wvhat form of output is to be used. Opens */
/* response file, if appropriate. */
’ 2. scalar change-in-output; /* flag: TRUE - prompt user for */
/* how to change output. */
3. Prompt for change-in-output;
4, Read change-in-output;
5. if change-in-output
6. then begin , ,
7. Prompt for output form: CRT, file, both CRT&file;
8. Read output form;
9. Set CRT-output-flag;
10. Set file-output-flag;
11. if file-output-flag
12, then
13, Prompt for response-file name;
14, Read response-file-name;
15. Open response-file-name;
16. and if;
17. and ifs

18. end procedure;

T

2.

4.
5.
6.

8l
9.
10.
11.

1.

PAGE 148

procedure RESPONSE(input: respouse);
/* Outputs the response. */

record response; /* to be output */

if CRT-output-flag
then
Print response on CRT;
end if;
if file-output-flag
then
Write response in file(response-file-name);
end if;
end procedure;

procedure FINISH;
/* Carries out whatever processing is needed when a subsession */
/* is completed, closes response-file-name if appropriate. */

if file—output-flag
then

close(response-file-name);

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration
Code 012A

Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Hq

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Y

PAGE 149

100

